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A. We study Guoliang Yu’s Property A and construct metric spaces which
do not satisfy Property A but embed coarsely into the Hilbert space.

1. I

Guoliang Yu introduced a weak version of amenability for discrete metric spaces,
which he called Property A [Yu]. This property, if satisfied for a metric spaceX,
implies the existence of a coarse embedding ofX into the Hilbert space. For metric
spaces with bounded geometry this implies that the Coarse Baum-Connes Conjec-
ture and in a particular case when this space is a finitely generated groupΓ with
the word length metric, the Novikov Conjecture forΓ [Yu].

The converse, whether every coarsely embeddable metric space has Property
A was not known. The only examples of spaces which are known so far not to
satisfy Property A are expanders and Gromov’s groups which contain them in their
Cayley graphs [Gr2] , `p-spaces for 2< p ≤ ∞ [JR], [DGLY], box spaces (see
[Roe1]) and warped cones [Roe2]. Only in the last two cases methods other than
non-embeddability intò2 were developed to show that Property A is not satisfied,
however in all the known cases these spaces also do not admit a coarse embedding
into the Hilbert space.

In this paper we study Property A and its behavior for locally finite metric
spaces. The main idea, roughly speaking, is to look at the smallest, diameter of
the support with which Property A is satisfied for a given, usually bounded, met-
ric space. Our main observation is that for then-fold direct products of amenable
groups this best diameter must grow to infinity withn. This allows us to construct
metric spaces which do not have Property A. More precisely, our main example is
a disjoint union

∐
Γn, whereΓ is a finite group. The reasoning we use is flexible

enough not to obstruct coarse embeddability and thus our examples embed coarsely
into the Hilbert space.

For background we refer the reader to [Roe1] for a self-contained, thorough
treatment of coarse geometry, in particular discussion of Property A and coarse
embeddability, and to [Pier] and [BHV, Appendix G] for a survey of amenability.
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I am greatly indebted to Guoliang Yu for many inspiring and enlightening con-
versations. Many thanks to Guihua Gong for reading early versions of the manu-
script and very helpful discussions.

2. P A

In what follows wheneverA is a set,|A| will denote its cardinality. A discrete
metric spaceX is locally finite if |B(x,R)| < ∞ for everyx ∈ X andR ∈ R. X has
bounded geometry if for everyR> 0 there exists a numberN(R) > 0 such that for
everyx ∈ X we have

|B(x,R)| ≤ N(R).

A locally finite, in particular a bounded geometry metric space is necessarily count-
able.

Definition 2.1 ([Yu]) . A discrete metric space X has Property A if for every R> 0
andε > 0 there is a collection{Ax}x∈X of finite subsets of X×N and S> 0 such that

(1) (x,1) ∈ Ax for every x∈ X

(2)
|Ax4Ay|

|Ax∩Ay|
≤ ε when d(x, y) ≤ R;

(3) Ax ⊂ B(x,S) × N

The class of finitely generated groups possessing Property A is quite large - so
far the only such groups known not to have Property A are Gromov’s groups which
contain expanders in their Cayley graphs. There are also groups for which it is not
yet known whether they have Property A, e.g. Thompson’s groupF.

It was also shown by Guentner, Kaminker and Ozawa that a finitely generated
group has Property A if and only if the reduced groupC∗-algebraC∗r (Γ) is exact,
see [Oz].

We will need the weak Reiter’s condition, a reformulation of Property A in terms
of finitely supported functions in the unit sphere of the Banach space`1. This was
proved by Higson and Roe [HR].

Denote
`1(X)1,+ = { f ∈ `1(X) | ‖ f ‖1 = 1, f ≥ 0 } .

In other words,̀ 1(X)1,+ is the space of positive probability measures onX. If Γ
is a finitely generated group,γ ∈ Γ and f ∈ `1(Γ)1,+ then byγ · f we denote the
translation off by elementγ, i.e.

(γ · f )(g) = f (γ−1g).

Proposition 2.2([HR]). Let X be a discrete metric space with bounded geometry.
The following conditions are equivalent:
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(1) X has property A;

(2) For every R> 0 andε > 0 there exists a mapξ : X→ `1(X)1,+ and S∈ R
such that‖ξ(x) − ξ(y)‖1 ≤ ε whenever d(x, y) ≤ R andsuppξ(x) ⊆ B(x,S)
for every x∈ X.

It will become important in the last section that the assumption of bounded ge-
ometry is needed only when proving (2)⇒(1).

3. P A   

A finitely generated groupΓ will be always considered with a left-invariant
integer-valued metricdΓ (e.g. word length metric) which takes all values between
0 and the diameter of the group. The length of an elementγ ∈ Γ is defined to be
|γ| = dΓ(γ,e). We also use the standard notationBΓ(S) to denote a ball of radiusS
around the identity, we will most times omit the subscriptΓ if it does not lead to
confusion.

Definition 3.1. Let X be a discrete metric space.
(A) For a given R> 0, ε > 0 and mapξ : X→ `1(X)1,+ satisfying

(1) ‖ξ(x) − ξ(y)‖1 ≤ ε

for every x, y ∈ X such that d(x, y) ≤ R, denote

SX (ξ,R, ε) = inf S,

SX (ξ,R, ε) ∈ N ∪ {∞}, where the infimum is taken over all S> 0 satisfying
suppξ(x) ⊂ B(x,S) for every x∈ X.

(B) Define
diamAX(R, ε) = inf SX (ξ,R, ε),

diamAX(R, ε) ∈ N∪ {∞}, where the infimum is taken over all mapsξ : X→ `1(X)1,+

satisfying (1) with the given R andε for all x, y ∈ X such that d(x, y) ≤ R.

(C) If Γ is a finitely generated group then for given R> 0, ε > 0 by diamF
Γ
(R, ε) ∈

N∪{∞} we denote the smallest S such that there exists a function f∈ `1(Γ)1,+ such
thatsuppf ⊆ B(S) and

(2) ‖ f − γ · f ‖1 ≤ ε

for all γ ∈ Γ such that|γ| ≤ R.

Thus diamF
Γ

is the notion resulting from restricting (A) and (B) to considering
only functionsξ : Γ → `1(Γ)1,+ satisfying (1) from Definition 3.1 (A), and which
are translates of a single functionf ∈ `1(Γ)1,+, i.e. ξ(γ) = γ · f for everyγ ∈ Γ and
for some fixedf ∈ `1(X)1,+.

The exact values of both diamA and diamF depend on the metric, in particular in
the case of a word length on the group, on the choice of the generating set. What is
independent of such choices is whether diamA and diamF are finite or infinite. The
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following is a straight-forward consequence of Definition 3.1 and the Proposition
2.2.

Proposition 3.2. (1a)If a discrete metric space X has Property A thendiamAX(R, ε) <
∞ for every R> 0 andε > 0.
(1b) A discrete metric space X with bounded geometry has Property A if and only
if diamAX(R, ε) < ∞ for every R> 0 andε > 0.
(2) A finitely generated group is amenable if and only ifdiamF

Γ
(R, ε) < ∞ for every

R> 0 andε > 0.

We will make use of the fact that Definition 3.1 gives nontrivial notions for
bounded metric spaces. Such a space, call itX, has Property A for anyR andε
with S = diamX, however in general diamAX(R, ε) might be drastically smaller
than diamX. We also have diamAX(R, ε) ≤ diamAX(R′, ε′) wheneverR′ ≤ R and
ε ≤ ε′, and similar inequalities hold for diamF

Γ
.

As mentioned before, a significant class of discrete spaces with Property A is
given by finitely generated amenable groups. What we are interested in is how in
this case diamA

Γ
behaves and whether it is related to diamF

Γ
.

Recall that one of the definitions of amenability provides the existence of a left-
invariant mean oǹ∞(Γ) (see e.g. [BHV, Appendix G] for a survey of amenability),
that is of a positive, normalized, left-invariant linear functional on`∞(Γ). For a
finite groupΓ andξ : Γ→ R the mean off is given by∫

Γ

f (γ) dσ(γ),

wheredσ is the normalized Haar measure onΓ. For an amenable groupΓ and
ξ ∈ `∞(Γ) we will denote the mean off by∫

Γ

f (g) dg.

Theorem 3.3. Let Γ be finitely generated amenable group and fix R≥ 1, ε > 0.
Then

diamAΓ (R, ε) = diamF
Γ
(R, ε) .

Proof. To show the inequality diamA
Γ

(R, ε) ≤ diamF
Γ
(R, ε), given a finitely sup-

ported functionf ∈ `1(Γ)1,+ satisfying 2 from Definition 3.1 (C) forR > 0 and
ε > 0 and allγ ∈ Γ such that|g| ≤ R, consider the mapξ : Γ→ `1(Γ)1,+ defined by
ξ(γ) = γ · f .

To prove the other inequality assume thatΓ satisfies conditions from (2) of
Proposition 2.2 forR > 0, ε > 0 with S > 0 realized by the functionξ : Γ →
`1(Γ)1,+. For everyγ ∈ Γ define

f (γ) =
∫
Γ

ξ(g)(γ−1g) dg.

This gives a well-defined functionf : Γ→ R, ξ(g)(γ−1g) as a function ofg belongs
to `∞(Γ) sinceξ(g)(γ) ≤ 1 for all γ,g ∈ Γ.
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First observe that if|γ| > S thenξ(g)(γ−1g) = 0 for all g ∈ Γ, thus f (γ) = 0
whenever|γ| > S. Consequently,

‖ f ‖1 =
∑
γ∈B(S)

f (γ) =
∑
γ∈B(S)

∫
Γ

ξ(g)(γ−1g) dg

=

∫
Γ

 ∑
γ∈B(S)

ξ(g)(γ−1g)

 dg =
∫
Γ

1 dg = 1.

Thus f is an element of̀1(Γ)1,+.

If λ ∈ Γ is such that|λ| ≤ R then

‖ f − λ · f ‖`1(Γ) =
∑
γ∈Γ

| f (γ) − f (λ−1γ)|

=
∑

γ∈B(S)∪λB(S)

|

∫
Γ

ξ(g)(γ−1g) dg−
∫
Γ

ξ(g)((λ−1γ)−1g) dg |

=
∑

γ∈B(S)∪λB(S)

|

∫
Γ

ξ(g)(γ−1g) dg−
∫
Γ

ξ(λ−1g)(γ−1g) dg |

=
∑

γ∈B(S)∪λB(S)

|

∫
Γ

(ξ(g)(γ−1g) − ξ(λ−1g)(γ−1g)) dg |

≤

∫
Γ

 ∑
γ∈B(S)∪λB(S)

|ξ(g)(γ−1g) − ξ(λ−1g)(γ−1g)|

 dg

≤

∫
Γ

ε dg = ε,

since ∫
Γ

ξ(g)((λ−1γ)−1g) dg =

∫
Γ

λ ·
(
ξ(g)((λ−1γ)−1g)

)
dg

=

∫
Γ

ξ(λ−1g)(γ−1g) dg,

by the left invariance of the mean.
Thus for the previously chosenR and ε we have constructed a functionf ∈

`1(Γ)1,+ satisfying‖ f − γ · f ‖`1(Γ) ≤ ε whenever 1≤ |γ| ≤ Rand suppf ⊆ B(S) for
the sameS as forξ. This proves the second inequality. �

4. B  P A  -
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Let (X1,dX1), (X2,dX2) be metric spaces. We will consider the cartesian product
X1 × X2 with the`1-metric, i.e.

dX1×X2(x, y) = dX1(x1, y1) + d(x2, y2),

for x = (x1, x2), y = (y1, y2), both inX1×X2. If Γ1, Γ2 are finitely generated groups
such metric onΓ1 × Γ2 is left-invariant if and only if the metrics on the factors
are. In particular, if the metric on the factors is the word length metric then the`1-
metric on the direct product gives the word length metric associated to the standard
set generators arising from the generators on the factors.

In this section we study how does diamA behave for cartesian powers of a fixed
finitely generated amenable groupΓ. Theorem 3.3 will be our main tool, allowing
us to reduce questions about diamA

Γn to questions about diamF
Γn. Note that ifX

andY are discrete metric spaces, and for everyR > 0 andε > 0 there are maps
ξ : X → `1(X) andζ : Y → `1(Y) realizing Property A forX andY respectively,
then the mapsξ ⊗ ζ : X × Y→ `1(X × Y) of the form

ξ ⊗ ζ(x, y) = ξ(x) ζ(y),

give Property A forX×Y in the sense of Proposition 2.2 and in the particular case
whenY = X the diameter of the supports increases (the reader can extract precise
estimates from [DG]). The main result of this section shows that this is always the
case.

Proposition 4.1. LetΓ be a finitely generated group and assume

‖ f − γ · f ‖1 ≥ ε0

for all f ∈ `1(Γ)1,+ with suppf ⊆ BΓ(S) ⊆ Γ where S> 0 is fixed and|γ| = 1.
Then for any n∈ N and f ∈ `1(Γn)1,+ with suppf ⊆ BΓn(S) ⊆ Γn and anyγ ∈ Γn,
|γ| = 1,

‖ f − γ · f ‖1 ≥ ε0.

Proof. Let f ∈ `1(Γ × Γ)1,+ and fx : {x} × Γ → R be the restriction off to the set
{x} × Γ. Then forγ ∈ Γ × {e},

‖ f − γ · f ‖1 =
∑
x∈Γ

‖ fx − γ · fx ‖1 =
∑
x∈Γ

‖ fx − γ · fx ‖1
‖ fx‖1

‖ fx‖1

≥ ε0
∑
x∈Γ

‖ fx‖1 = ε0.

Similarly we prove the claim forγ ∈ {e}×Γ. The claim forΓn follows by induction
onn. �

Proposition 4.2. LetΓ be a finitely generated group and fn be a sequence of func-
tions fn ∈ `1(Γ)1,+, such that

‖ fn − γ · fn‖1 < 2,

and
suppfn ⊆ BΓn(S)
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for a fixed S∈ N, some R> 0 and allγ ∈ Γn with |γ| ≤ R. Then| suppfn| → ∞.

Proof. Assume the contrary, that| suppfn| ≤ N ∈ N for infinitely manyn ∈ N.
Choose anyn ≥ S N+ 1. Then suppfn ⊆ ΓN ( Γn so for anyγ < ΓN, |γ| = 1 we
have

‖ f − γ · f ‖1 = 2.

�

Remark 4.3. It follows from the above proof that the number of elements in the
support of fn is bounded below bynS . Intuitively one can expect that the supports
of the functionsfn will be ”thick” and ”evenly distributed” in all the dimensions,
so in general we believe one should have much better estimates. Compare however
[HR, Lemma 4.3].

The next theorem is the key ingredient in the construction of spaces without
Property A.

Theorem 4.4. LetΓ be a finitely generated amenable group. Then for any0 < ε <
2,

lim inf
n→∞

diamF
Γn(1, ε) = ∞.

Proof. Assume the contrary. Then there exists anS ∈ N such that for infinitely
manyn ∈ N there is a functionfn ∈ `1(Γn)1,+ satisfying

‖ fn − γ · fn‖1 ≤ ε,

suppfn ⊂ BΓn(S) for all γ ∈ Γ such that|γ| = 1. Fix δ ≤ 2−ε
2S andm ∈ N and for any

n ∈ N for which fn as above exists consider the decomposition

Γn = Γm× Γm× ... × Γm× Γr

where 0≤ r < m. Fork = 1, ... , n−r
m denote by∂k fn the restriction offn to the set

{g ∈ suppfn : |g| = S, g(i) , e⇔ (k− 1)m+ 1 ≤ i ≤ mk},

of those elements of suppfn whose length in thisk-th factorΓm is exactlyS, and
extend it with 0 to a function on the wholeΓn; we denote byg(i) the i-th coordinate
of g ∈ Γn as an element of the cartesian product.

Since fork , l, wherekm+ r ≤ n andlm+ r ≤ n, we have

supp∂k fn ∩ supp∂l fn = ∅

and
n−r
m∑

k=1

‖∂k fn‖1 ≤ ‖ fn‖1 = 1,

we can conclude that for every ˆε > 0, which we now choose to satisfyε+2ε̂
1−ε̂ ≤ ε+δ,

there exists a sufficiently largen ∈ N andi ∈ N such that

‖∂i fn‖1 ≤ ε̂.
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Denote

ϕ =
fn − ∂i fn
‖ fn − ∂i fn‖1

∈ `1(X)1,+ .

We have

‖ϕ − γ · ϕ‖1 =
‖( fn − γ · fn) + (γ · ∂i fn − ∂i fn)‖1

‖ fn − ∂i fn‖1

≤
ε + 2ε̂
1− ε̂

≤ ε + δ,

by the previous choice of ˆε.
Now consider the decompositionΓn = Γm × Γn−m whereΓm is thei-th factor in

which we performed the previous operations onfn. For everyg ∈ Γm define (we’re
recycling the letterf here, the ”old” f ’s don’t appear in the proof anymore)

f (g) =
∑

h∈Γn−m

ϕ(gh),

whereh ∈ Γn−m. Then f ∈ `1(Γm)1,+ and suppf ⊆ BΓm(S − 1). Moreover, for an
elementγ ∈ Γm of length 1,

‖ f − γ · f ‖1 =
∑
g∈Γm

| f (g) − f (γ−1g)|

=
∑
g∈Γm

∣∣∣∣ ∑
h∈Γn−m

ϕ(gh) − ϕ(γ−1gh)
∣∣∣∣

≤
∑
g∈Γm

∑
h∈Γn−m

|ϕ(gh) − ϕ(γ−1gh)|

=
∑
g∈Γn

|ϕ(g) − ϕ(γ−1g)| = ‖ϕ − γ · ϕ‖1 ≤ ε + δ.

Sincem ∈ N was arbitrary we can obtain a family{ fm}m∈N of functions fm ∈
`1(Γm)1,+ satisfying

‖ fm− γ · fm‖1 ≤ ε + δ

and suppfm ⊆ BΓm(S − 1) whereδ is independent ofm. If we apply the procedure
described above to this family we can again reduce the diameter of the supports
of the functionsfm and obtain yet another new family{ fm}m∈N of functions fm ∈
`1(Γm)1,+ such that

‖ fm− γ · fm‖1 ≤ ε + 2δ

and suppfm ⊆ BΓm(S − 2).
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After repeating this procedureS times we obtain a family{ fm}m∈N such that
f ∈ `1(Γm)1,+ and

‖ fm− γ · fm‖1 ≤ ε + Sδ

≤ ε + S
2− ε
2S

< 2,

sinceδ ≤ 2−ε
2S . However, for everym ∈ N

fm(g) =

{
1 wheng = e,
0 otherwise.

and
‖ fm− γ · fm‖ = 2

for everym ∈ N and everyγ ∈ Γm, which gives a contradiction. �

Remark 4.5. In the proofs in this section we have reduced the study Property
A to studying amenability, however we expect that the above considerations can
be carried out as well in a more general setting for the price of complicating the
arguments and estimates.

5. C    P A

In this section we construct metric spaces which do not have Property A. The
idea is natural: take a disjoint union of bounded, locally finite metric spaces, for
which it is known that they satisfy Property A with diameters growing to infinity,
so that we violate the condition from Proposition 3.2.

On the other hand the condition diamAX(R, ε) = ∞ for anyR> 0 andε > 0 does
not rule out coarse embeddability into the Hilbert space, which is characterized by
the existence of ac0-type functions in the sphere of`1. This was proved by Dadar-
lat and Guentner [DG], see also [No1] for discussion and applications.

Given a sequence{(Xn,dn)}∞n=1 we will make the disjoint sumX =
∐

Xn into a
metric space by giving it a metricdX such that

(1) dX restricted toXn is dn,

(2) dX(Xn,Xn+1) ≥ n+ 1,

(3) if n ≤ m we havedX(Xn,Xm) =
∑m−1

k=n dX(Xk,Xk+1).

Theorem 5.1. Let Γ be a finite, group. The (locally finite) metric spaceXΓ =∐∞
n=1 Γ

n has the following properties:

(1) XΓ does not have Property A
(2) XΓ embeds coarsely intòp for any1 ≤ p ≤ ∞.
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Proof. To prove 1) observe that by 3.2 ifXΓ would satisfy Property A then diamA
XΓ

(1, ε)
would be finite for every 0< ε < 2, which in turn would imply that the restric-
tion of mapsξ realizing Property A for everyε andR = 1 to eachΓn ⊆ X Γ gives
Property A with diameter bounded uniformly inn,

sup
n∈N

diamAΓn(1, ε ) < ∞,

sinceBXΓ(x,R) = BΓn(x,R) for all sufficiently largen and allx ∈ Γn ⊂ X Γ. How-
ever by theorems 4.4 and 3.3,

diamF
Γn(1, ε ) = diamAΓn(1, ε )

and
diamF

Γn(1, ε) −→ ∞

asn→ ∞.
To prove 2), note that sinceΓ is a finite metric space any one-to-one map from

Γ into the spacè1 is biLipschitz. Denote the biLipschitz constant byL. Then the
product map

f n = f × f × ... × f︸           ︷︷           ︸
n times

: Γn→

 n∑
i=1

`1


1

is also a biLipschitz map with the same constantL, where
(∑n

i=1 `1
)
1

denotes a
direct sum ofn copies of`1 with a `1-metric, which is of course isometrically
isomorphic tò 1. It is clear that this suffices to embedXΓ into `1 coarsely.

In [No1] the author proved that the Hilbert space embeds coarsely into any`p,
1 ≤ p ≤ ∞ and that the properties of coarse embeddability into`p for 1 ≤ p ≤ 2
are all equivalent. ThusXΓ embeds coarsely into the Banach space`p for any
1 ≤ p ≤ ∞. �

Note that in the simplest caseG = Z2, the spaceXZ2 is a disjoint union of
discrete cubes of increasing dimensions, with the`1-metric. We thus have the
following

Corollary 5.2. An infinite-dimensional cube complex does not have Property A

On the other hand it is also not hard to construct an infinite-dimensional cube
complex which embeds coarsely into any`p, giving a different realization of ex-
amples discussed above.

We also want to mention a conjecture formulated by Dranishnikov [Dr, Con-
jecture 4.4] that a discrete metric spaceX has Property A if and only ifX embeds
coarsely into the spacè1. The examples discussed in this section are in particular
counterexamples to Dranishnikov’s conjecture.

Remark 5.3. As it is apparent from the proof, the theorem works as soon asΓ is
amenable and admits a quasi-isometric embedding into`1. This is satisfied e.g. for
finitely generated abelian groups, however it is not clear what happens in the case
of other amenable groups and whether they all embed quasi-isometrically into`1.
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Definition 3.1 suggests to study asymptotics of growth functions related to Prop-
erty A in the spirit of Følner functions introduced by Vershik, or equivalently,
isoperimetric profiles as defined by Gromov. Such invariants are studied in [No2].

R

[BHV] B. B , P.   H, A. V, Kazhdan’s Property (T), manuscript avaliable
online.

[DG] M. D, E. G, Constructions preserving Hilbert space uniform embed-
dability of discrete groups, Vol. 355, Trans. Amer. Math. Soc. No. 8 (2003), p.3253-
3275.
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