COARSELY EMBEDDABLE METRIC SPACES WITHOUT
PROPERTY A

PIOTR W. NOWAK

Asstract. We study Guoliang Yu’s Property A and construct metric spaces which
do not satisfy Property A but embed coarsely into the Hilbert space.

1. INTRODUCTION

Guoliang Yu introduced a weak version of amenability for discrete metric spaces,
which he called Property A [Yu]. This property, if satisfied for a metric spéce
implies the existence of a coarse embeddiny afto the Hilbert space. For metric
spaces with bounded geometry this implies that the Coarse Baum-Connes Conjec-
ture and in a particular case when this space is a finitely generated Gnwith
the word length metric, the Novikov Conjecture fofYu].

The converse, whether every coarsely embeddable metric space has Property
A was not known. The only examples of spaces which are known so far not to
satisfy Property A are expanders and Gromov’s groups which contain them in their
Cayley graphs[[Gi , ¢p-spaces for 2< p < oo [JR], [DGLY], box spaces (see
[Roer]) and warped cones [Rge Only in the last two cases methods other than
non-embeddability intd, were developed to show that Property A is not satisfied,
however in all the known cases these spaces also do not admit a coarse embedding
into the Hilbert space.

In this paper we study Property A and its behavior for locally finite metric
spaces. The main idea, roughly speaking, is to look at the smallest, diameter of
the support with which Property A is satisfied for a given, usually bounded, met-
ric space. Our main observation is that for th@ld direct products of amenable
groups this best diameter must grow to infinity withThis allows us to construct
metric spaces which do not have Property A. More precisely, our main example is
a disjoint union | I, wherer is a finite group. The reasoning we use is flexible
enough not to obstruct coarse embeddability and thus our examples embed coarsely
into the Hilbert space.

For background we refer the reader o [Rofor a self-contained, thorough
treatment of coarse geometry, in particular discussion of Property A and coarse
embeddability, and ta [Pier] and [BHV, Appendix G] for a survey of amenability.
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| am greatly indebted to Guoliang Yu for many inspiring and enlightening con-
versations. Many thanks to Guihua Gong for reading early versions of the manu-
script and very helpful discussions.

2. PrROPERTY A

In what follows wheneveA is a set,|A| will denote its cardinality. A discrete
metric spaceX is locally finite if |B(x, R)] < oo for everyx € X andR € R. X has
bounded geometry if for eveiig > 0 there exists a numbgy'(R) > 0 such that for
everyx € X we have

IB(x, R < N(R).

A locally finite, in particular a bounded geometry metric space is necessarily count-
able.

Definition 2.1 ([Yu]). A discrete metric space X has Property A if for every B
ande > Othere is a collection Ay} xex Of finite subsets of XN and S> 0 such that

(1) (x,1) € Ay for every xe X

[Ax & Ay .
2 Py < ewhendxy) <R;

(3) Ax c B(x,S) x N

The class of finitely generated groups possessing Property A is quite large - so
far the only such groups known not to have Property A are Gromov’s groups which
contain expanders in their Cayley graphs. There are also groups for which it is not
yet known whether they have Property A, e.g. Thompson’s gFaup

It was also shown by Guentner, Kaminker and Ozawa that a finitely generated
group has Property A if and only if the reduced grdZipalgebraC; (') is exact,
seel[Oz].

We will need the weak Reiter’s condition, a reformulation of Property A in terms
of finitely supported functions in the unit sphere of the Banach spacEhis was
proved by Higson and Rog [HR].

Denote

0(X)1+ ={f e a(X) 1IfllL =1, f 2 0}.
In other words¢1(X)1.+ is the space of positive probability measuresXonif T’

is a finitely generated group, € I" and f € ¢1(I')1.+ then byy - f we denote the
translation off by elementy, i.e.

(r- D)@ = fo 9.

Proposition 2.2([HR]). Let X be a discrete metric space with bounded geometry.
The following conditions are equivalent:
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(1) X has property A;

(2) For every R> 0 ande > Othere existsamap: X — £1(X)1+ and Se R
such that|£(x) — &£(y)ll1 < e whenever ¢k, y) < R andsuppé(x) € B(x, S)
for every xe X.

It will become important in the last section that the assumption of bounded ge-
ometry is needed only when proving £}1).

3. PROPERTY A AND AMENABLE GROUPS

A finitely generated grouf will be always considered with a left-invariant
integer-valued metridr (e.g. word length metric) which takes all values between
0 and the diameter of the group. The length of an element” is defined to be
lyl = dr(y, €). We also use the standard notatB(S) to denote a ball of radius
around the identity, we will most times omit the subsciigf it does not lead to
confusion.

Definition 3.1. Let X be a discrete metric space.
(A) For agiven R> 0, e > 0 and map¢ : X — ¢1(X)1+ satisfying

1) 160 — W)l < &
for every xy € X such that ¢x, y) < R, denote

SX (‘fe R7 8) = inf Sa

Sx (£,R &) € N U {co}, where the infimum is taken over all S 0 satisfying
suppé(x) < B(x, S) for every xe X.

(B) Define

diamy(R ) = inf Sx (£,R #),
diami’(R, €) € NU{co}, where the infimum is taken over all mapsX — ¢1(X)1.+
satisfying[(1) with the given R ardfor all X,y € X such that €x,y) < R.

(C) If T is a finitely generated group then for giversRD, £ > 0 by diar‘r?;(R, £) €
NU{co} we denote the smallest S such that there exists a funct#y ()1 such
thatsuppf ¢ B(S) and

() If—y-fli<e
for all y € I such thaty| < R.

Thus dianf is the notion resulting from restricting (A) and (B) to considering
only functions¢ : T — ¢1(I')1,; satisfying (1) from Definitiof 3]1 (A), and which
are translates of a single functidre ¢1(I')1 +, i.e.&(y) =y - f for everyy e I" and
for some fixedf € €1(X)1 +.

The exact values of both diafrand diant depend on the metric, in particular in
the case of a word length on the group, on the choice of the generating set. What is
independent of such choices is whether disamd dianf are finite or infinite. The
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following is a straight-forward consequence of Definition 3.1 and the Proposition
2.2.

Proposition 3.2. (1a)If a discrete metric space X has PropertyAtmﬁami‘(R, g) <

oo for every R> 0ande > 0.

(1b) A discrete metric space X with bounded geometry has Property A if and only
if diam}(R &) < oo for every R> 0 ande > 0.

(2) Afinitely generated group is amenable if and only|iarr?;(R, £) < oo for every
R>0Oande > 0.

We will make use of the fact that Definitign 3.1 gives nontrivial notions for
bounded metric spaces. Such a space, ca| ihas Property A for anyRr ande
with S = diamX, however in general diaﬁ(R, £) might be drastically smaller
than dianmX. We also have diaf(R ) < diam{(R, &) wheneverR < R and
e < ¢, and similar inequalities hold for diafﬁm

As mentioned before, a significant class of discrete spaces with Property A is
given by finitely generated amenable groups. What we are interested in is how in
this case diarﬁ behaves and whether it is related to d'fé.m

Recall that one of the definitions of amenability provides the existence of a left-
invariant mean oi.,(I') (see e.g.[IBHV, Appendix G] for a survey of amenability),
that is of a positive, normalized, left-invariant linear functionalf{l’). For a
finite groupl’ andé : T' — R the mean off is given by

f () do ().
T

wheredo is the normalized Haar measure bn For an amenable group and
¢ € {(I') we will denote the mean df by

fr f(g) dg.

Theorem 3.3. LetT" be finitely generated amenable group and fixR, £ > 0.
Then
diamf_‘(R, g) = diarrf?(R, g).

Proof. To show the inequality diaﬁ’(R, g) < diam?(R, €), given a finitely sup-
ported functionf e £1(I'),+ satisfying[2 from Definitiory 3]1 (C) foR > 0 and
e > 0and ally € I" such thatg| < R, consider the mag : I' — ¢1(I')1.+ defined by
Ey)=v-f.

To prove the other inequality assume thiasatisfies conditions from (2) of
Propositior]f 2.2 folR > 0, & > 0 with S > 0 realized by the functiog : T —
t1(I')1.+. For everyy e I" define

fy) = fr £9)0 ) dg.

This gives a well-defined functioh: ' — R, £(g)(y~1g) as a function of belongs
to £ (') since&(g)(y) < Lforally,geT.



COARSELY EMBEDDABLE SPACES WITHOUT PROPERTY A

First observe that ify| > S then&(g)(ytg) = O for allg € T, thusf(y) = O
whenevety| > S. Consequently,

Ifl = > f0= > | &) "9 dg
7eB(S) yeB(S) VT
- [Z f(g)(y-lg)] dg - [1dg - 1
I' \,eB(s) r

Thusf is an element of1(I") 1 +.

If A €T issuchthail] < Rthen

DTt - fy)

yell

_ -1 _ ~1-1
- Y 1[0 9 do- [ d@@ iy o dg

yeB(S)UAB(S)

- Y i a@o T do- [ egoo dol

yeB(S)uaB(s) T

If—a- fllem

- Y i@ e - s tan o) dal

yeB(S)uaBS) T

IA

| { 3 |§(g)(y-1g)—f(rlg)(y-lgn] dg

yeB(S)UAB(S)

fsdg = g,
r

fr £0)((1) 1g) dg

IA

since

[ 4@y o) g

fr £ o) dg

by the left invariance of the mean.

Thus for the previously choseR and e we have constructed a functidn e
{1(I")1,+ satisfying||f —y - fll,, ) < e whenever I< |y| < Rand supg < B(S) for
the sameS as foré. This proves the second inequality. o

4. BEHAVIOR OF PROPERTY A IN HIGH-DIMENSIONAL
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PRODUCTS OF AMENABLE GROUPS

Let (X1, dx,), (X2, dx,) be metric spaces. We will consider the cartesian product
X1 X Xo with the ¢1-metric, i.e.

dx,xx, (%, Y) = dx, (X1, y1) + d(X2, ¥2),

for x = (X1, X2), ¥ = (Y1, ¥2), both inXy x X,. If I'1, I'> are finitely generated groups
such metric o’y x I'z is left-invariant if and only if the metrics on the factors
are. In particular, if the metric on the factors is the word length metric thefythe
metric on the direct product gives the word length metric associated to the standard
set generators arising from the generators on the factors.

In this section we study how does didrbehave for cartesian powers of a fixed
finitely generated amenable grolipTheoreni 3.3 will be our main tool, allowing
us to reduce questions about d%mo guestions about diafﬁm. Note that if X
andY are discrete metric spaces, and for eviery 0 ande > 0 there are maps
£ X > 6(X)and? 1 Y — £1(Y) realizing Property A foiX andY respectively,
thenthe mapg§® ¢ : X x Y — £1(X x Y) of the form

£®@L(xY) = £ £(y),

give Property A forX x Y in the sense of Propositipn 2.2 and in the particular case
whenY = X the diameter of the supports increases (the reader can extract precise
estimates from [DG]). The main result of this section shows that this is always the
case.

Proposition 4.1. LetT be a finitely generated group and assume
If =y flla>e0

for all f € ¢1(I')1+ with suppf € Br(S) € I' where S> 0is fixed andy| = 1.
Then for any re N and f € ¢,(I")1, with suppf € Bm(S) C I" and anyy € I,
Iyl =1,

If =y flls > eo.

Proof. Let f € ¢1(I' xI')1+ and fy : {x} x ' — R be the restriction of to the set
{x} xI'. Then fory e I" x {¢},

fx—vy-f1
1=yt = Slfe—y-fuly = 3 Y Dl

~ e | LY

£0 Z Ifxll1 = eo.

Similarly we prove the claim foy € {e} xI'. The claim forl™ follows by induction
onn. mi

v

Proposition 4.2. LetT be a finitely generated group and lie a sequence of func-
tions f, € £1(I')1.+, such that

Ifn =y fullt <2

and
suppf, € Bm(S)



COARSELY EMBEDDABLE SPACES WITHOUT PROPERTY A 7

for a fixed Se N, some R> 0 and ally € " with |y| < R. Then suppf,| — .

Proof. Assume the contrary, thasuppf,| < N € N for infinitely manyn € N.
Choose any1 > SN+ 1. Then supd, € TN ¢ I so for anyy ¢ TN, |y| = 1 we
have

If-y-fla=2
O

Remark 4.3. It follows from the above proof that the number of elements in the
support off, is bounded below by. Intuitively one can expect that the supports

of the functionsf, will be "thick” and "evenly distributed” in all the dimensions,

so in general we believe one should have much better estimates. Compare however
[HR, Lemma 4.3].

The next theorem is the key ingredient in the construction of spaces without
Property A.

Theorem 4.4. LetI be a finitely generated amenable group. Then for@rye <
2,
lim inf diant,(1, &) = co.

Proof. Assume the contrary. Then there existsSae N such that for infinitely
manyn € N there is a functiorf, € £,(I)y ; satisfying
Ifa—v- fallL <&,

suppf, c B (S) for all y € " such thaty| = 1. Fix¢ < 22;5"’" andm € N and for any
n € N for which f, as above exists consider the decomposition

M=TMxIMx..xIMxI"
where O<r <m. Fork=1, ..., ”—;{ denote by f,, the restriction off,, to the set
{gesuppfy, 1 10/=S, gj zee (k-1)m+ 1 <i <mk},

of those elements of sudp whose length in thi&-th factorI™ is exactlyS, and
extend it with O to a function on the whol&; we denote by thei-th coordinate
of g € I'" as an element of the cartesian product.

Since fork # |, wherekm+r < nandlm +r < n, we have

suppdkfn N suppoify = 0
and

n-r
m

Dokl < Nifally = 1,
k=1

we can conclude that for evegy>"0, which we now choose to satis*fff_%é < 46,
there exists a dticiently largen € N andi € N such that

10i fall1 < &.



8 PIOTR W. NOWAK

Denote
fn_aifn
=— e (1(X .
? = T atall ©
We have
le—v-¢lli = I(fa =y fn) + (- 0ifa = 0i f)ll1
[Ifn = 0 fhll1
< 8+2A8 < €+0,
1-¢

by the previous choice af. ~

Now consider the decompositidit = I'™ x '™ wherel™ is thei-th factor in
which we performed the previous operationsfgnFor everyg € I'™ define (we're
recycling the letterf here, the "old”f’s don't appear in the proof anymore)

f@= ), ¢,
hern-m

whereh € T"™, Thenf € ¢;(I™)1+ and supd < Brm(S — 1). Moreover, for an
elementy € ' of length 1,

If—y-fllL = Zlf(g)—f(y‘lg)|

gel'm

= S elah - ¢ ah
geI'™ hern-m

< 303 lelgh - o(y tgh)
gel'™ hern-m

= leo(g)—so(y‘lg)l = llg—v-¢llL < e+6.
gel™m

Sincem € N was arbitrary we can obtain a fami{ym}mey Of functions fy, €
£1(I')1 ;. satisfying

Ifm—v - fmllt<e+0

and supgm € Brn(S — 1) wheres is independent afin. If we apply the procedure
described above to this family we can again reduce the diameter of the supports
of the functionsf,, and obtain yet another new fami¥m}men Of functions fy, €
£1(')1.+ such that

fm—7v- fmlls <&+26
and SUprm - Brm(s - 2)



COARSELY EMBEDDABLE SPACES WITHOUT PROPERTY A 9

After repeating this procedur® times we obtain a family fn}men Such that
fe fl(l“m)“ and

fm—7-fmli < €+S6

2—¢
< —_—
< e&+S 7S < 2,

sinces < Z£. However, for everyne N

< 5.
[ 1 wheng=e¢g
fm(Q) = { 0 otherwise.
and
Ifm =7y fmll =2
for everym e N and everyy € I'™, which gives a contradiction. O

Remark 4.5. In the proofs in this section we have reduced the study Property

A to studying amenability, however we expect that the above considerations can
be carried out as well in a more general setting for the price of complicating the
arguments and estimates.

5. CONSTRUCTING EMBEDDABLE SPACES WITHOUT PROPERTY A

In this section we construct metric spaces which do not have Property A. The
idea is natural: take a disjoint union of bounded, locally finite metric spaces, for
which it is known that they satisfy Property A with diameters growing to infinity,
so that we violate the condition from Propositjon|3.2.

On the other hand the condition di@(rR, g) = oo for anyR > 0 ande > 0 does
not rule out coarse embeddability into the Hilbert space, which is characterized by
the existence of eyg-type functions in the sphere éf. This was proved by Dadar-
lat and Guentnef [DG], see also [Ndor discussion and applications.

Given a sequencgXp, dn)}”; we will make the disjoint sunX = [[ X into a
metric space by giving it a metry such that

(1) dx restricted taX is dp,
(2) dx(Xn, Xns1) =2 n+ 1,

(3) if n < mwe havedx(Xn, Xm) = 2t day (X, Xicr1)-

Theorem 5.1. Let T be a finite, group. The (locally finite) metric spadg =
[y~ " has the following properties:

(1) Xr does not have Property A
(2) Xt embeds coarsely int, for anyl < p < co.
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Proof. To prove 1) observe that : .2Xfr would satisfy Property A then dia@(l, €)
would be finite for every < & < 2, which in turn would imply that the restric-
tion of maps¢ realizing Property A for every andR = 1 to eacH™ C X gives
Property A with diameter bounded uniformly im

sup diam?,(1, &) < oo,
neN

sinceByx, (X, R) = Brn(x, R) for all suficiently largen and allx € T ¢ Xr. How-

ever by theorens 4.4 ahd B.3,
dianl,(1,&) = diam’ (L ¢)

and
diam,(1,&) — o
asn — oo.
To prove 2), note that sindeis a finite metric space any one-to-one map from
I' into the spacé; is biLipschitz. Denote the biLipschitz constant by Then the
product map

n
f”:fxfx...xf:F”a(Zfl]
1

ntimes i=1

is also a biLipschitz map with the same constlamwhere( o 51)1 denotes a
direct sum ofn copies of#; with a £;-metric, which is of course isometrically
isomorphic tof1. It is clear that this sfices to embed&T into £, coarsely.

In [Nos| the author proved that the Hilbert space embeds coarsely intgzany
1 < p < o and that the properties of coarse embeddability ftéor 1 < p < 2
are all equivalent. Thu&r embeds coarsely into the Banach spégdor any
1<p<oo. O

Note that in the simplest case = Z,, the spaceXz, is a disjoint union of
discrete cubes of increasing dimensions, with fhenetric. We thus have the
following

Corollary 5.2. An infinite-dimensional cube complex does not have Property A

On the other hand it is also not hard to construct an infinite-dimensional cube
complex which embeds coarsely into afyy giving a dtferent realization of ex-
amples discussed above.

We also want to mention a conjecture formulated by DranishnikoV [Dr, Con-
jecture 4.4] that a discrete metric spacéas Property A if and only iK embeds
coarsely into the spadg. The examples discussed in this section are in particular
counterexamples to Dranishnikov’s conjecture.

Remark 5.3. As it is apparent from the proof, the theorem works as sodnias
amenable and admits a quasi-isometric embedding’intdhis is satisfied e.g. for
finitely generated abelian groups, however it is not clear what happens in the case
of other amenable groups and whether they all embed quasi-isometricalls.into
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Definition[3.] suggests to study asymptotics of growth functions related to Prop-
erty A in the spirit of Faglner functions introduced by Vershik, or equivalently,
isoperimetric profiles as defined by Gromov. Such invariants are studied 3h [No
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