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A. We introduce a quasi-isometry invariant related to Property A and
explore its connections to various other invariants of finitely generated groups.
This allows to establish a direct relation between asymptotic dimension on one
hand and isoperimetry and random walks on the other. We apply these results to
reprove sharp estimates on isoperimetric profiles of some groups and to answer
some questions in dimension theory.

A geometric characterization of amenable groups says that amenability is equiv-
alent to existence of sequence of Følner sets in the group. The degree of ”how
amenable” the group is can be measured by the growth rate of Følner sets for a
fixed set of generators - this is the so calledFølner functionof an amenable group,
it was introduced by Vershik in the 70’s (see Section 1 for definitions).

On the other hand one can study after Gromov theisoperimetric profileof any
discrete group, i.e. a quantitative dependance between the volumes of a setA and
its boundary∂A. It is a consequence of Følner’s characterization of amenability
that in the case of amenable groups finding the asymptotics of the Følner function
is equivalent to finding those of the isoperimetric profile. These functions also
turned out to play a role in probability theory on groups after they were linked with
random walks and the decay of the heat kernel by Varopoulos.

In [Yu2] Guoliang Yu introduced Property A, a weak, metric amenability condi-
tion. In this article we introduce a function AX : N→ Nwhich is a weak version of
Vershik’s Følner function. It is well defined for every discrete, locally finite metric
spaceX with Property A and it measures, roughly speaking, how well is Property A
satisfied for the given space. IfX = Γ is a finitely generated group equipped with a
word length metric (this is the situation which interest us the most) then a theorem
due to Guentner, Kaminker and Ozawa [GK1], [Oz] says thatΓ has Property A if
and only if the reduced groupC∗-algebraC∗r (Γ) is exact, thus the function AΓ can
be also interpreted as a measure of exactness of a discrete group.

We gain several benefits from introducing the function A. First, it is a quasi-
isometry invariant. Second, it has the advantage over the classical Følner function
that, just as Property A, it is well defined for much larger class of groups, which
includes allδ-hyperbolic groups, free products and many other non-amenable ex-
amples.
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The main feature of AΓ is that it is connected to other asymptotic invariants and
can be estimated in many ways. And so after going over the preliminaries, defini-
tions and basic properties in the first three sections, in Section 4 we show a direct
link between Vershik’s classical Følner function and our weak Følner function.
This connection is quite natural, after all Property A is modeled after amenability.
Formally our estimate is obtained through an averaging argument and allows to
exhibit examples of groups with weak Følner functions growing arbitrarily fast. It
also follows that if Thompson’s groupF would turn out to have Property A then
AF must grow faster than any polynomial.

In [Gro2] Gromov introduced the notion of asymptotic dimension, a large-scale
version of topological covering dimension. In section 5 we employ the fact that
finite asymptotic dimension implies Property A to estimate AΓ. More precisely,
a metric space with finite asymptotic dimension has an associatedtype function,
also defined in [Gro2] as the second quasi-isometry invariant arising from the def-
inition of asymptotic dimension. For spaces with finite asymptotic dimension the
estimates we obtain on the weak Følner function are in terms of this type function.
It follows in particular thatδ-hyperbolic groups have linear AΓ.

It should be visible already from the two paragraphs above that AΓ combines
the asymptotics arising in amenability with those arising in large-scale dimension
theory. This relation between asymptotic dimension and isoperimetry, formulated
rigorously in Theorem 6.1, is our main application of the function AΓ. Conse-
quently this also establishes a connection between asymptotic dimension and the
decay of the heat kernel. The latter is one of the central themes in the study of ran-
dom walks on finitely generated groups, we refer the reader to the articles [PS-C1],
[S-C1] and [CS-CV] for a comprehensive overview of this subject.

These observations allows us to obtain results in different directions. As an
example of an application to dimension theory, in Section 8 we construct for every
k = 1,2,3, . . . infinitely many finitely generated groups with asymptotic dimension
equal tok and infinite Assouad-Nagata dimension. In particular, this class contains
the lamplighter groups. It also follows that these groups don’t behave very well
under coarse embeddings into finite products of trees, this contrasts with the case of
hyperbolic spaces and groups, which embed quasi-isometrically into appropriately
chosen products of this type ([BS2], [BS3]). We also show that our results can give
sharp estimates on isoperimetric profiles, this is done in Section 7 by reproving,
using asymptotic dimension methods, these sharp estimates for some examples.

Finally in the last section we briefly discuss possible further applications of AΓ,
such as the one to the Hilbert compression of metric spaces (see [GK2]) and we list
some questions that remain open.

During the course of this work I have benefited greatly from enlightening and
stimulating conversation with Alexander Dranishnikov,Światosław Gal, John Roe,
Laurent Saloff-Coste, Mark Sapir and Guoliang Yu. I am deeply grateful for these
discussions and many very useful suggestions.



EXACTNESS AND ISOPERIMETRIC PROFILES 3

1. N 

The definitions and some of the results work in a general setting of metric
spaces, but we will mostly specialize to finitely generated groups with word length
metric.

Asymptotics. We will usually think of a functionf : N → N as a piecewise
linear function f : R → R, determined by it’s values on the integers. We don’t
lose any information this way since all the functions considered in this article are
nondecreasing.

Given two functionsf ,g : N → N we write f � g if f (n) ≤ C1g(C2n) for
some constantsC1,C2, and f ∼ g if f � g andg � f . We will write f ≺ g if the
inequality is strict, i.e.f � g but it is not true thatf ∼ g. We will also often say
that f is linear if f (n) � n, polynomial if f (n) � nk for somek ∈ N and so on.

We will sometimes write the inversef −1 of a function for which it is not clear if
it has an actual inverse. What we mean by this is the inverse of a invertible function
that has the same asymptotics asf .

Discrete metric spaces.We are going to consider discrete metric spaces which
are geodesic on the large scale.

Definition 1.1. A metric space is uniformly quasi-geodesic if there exist constants
C, L > 0 such that for any x, y ∈ X there exists a sequence x= x1, x2 . . . , xn−1, xn =

y of points in X such that n depends only on d(x, y) and
∞∑

i=1

d(xi , xi+1) ≤ Cd(x, y)

where x1 = x, xn = y and d(xi , xi+1) ≤ L.

A discrete metric spaceX hasbounded geometryif for every R > 0 there exists
a numberN(R) > 0 such that for everyx ∈ X,

#B(x,R) ≤ N(R)

holds. Such a space is necessarily countable.
All the metric spaces under consideration are assumed to have integer-valued

metric, to be of bounded geometry and uniformly quasi-geodesic. For convenience
we assume that quasi-geodesic condition is satisfied with withC = L = 1, just
like in the case of finitely generated groups with the word length metric. All these
conditions are not very restrictive.

Volume growth. We will always assume that our finitely generated groups are
equipped with a proper word length metric obtained from a finite, symmetric gen-
erating set and we will denote by| · | the length function,|γ| = d(γ,e). We will use
the notationB(r) = B(e, r) = { g ∈ Γ : |g| ≤ r } for the ball of radiusr in Γ. The
symbolρΓ will be reserved for volume growth ofΓ:

ρΓ(n) = #B(n).

Growth of any finitely generated group is either exponential (ρΓ ∼ en) or subexpo-
nential.
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Amenability. Let X be a set. Define

`1(X)1,+ = { f ∈ `1(X) : f ≥ 0, ‖ f ‖1 = 1 } .

In other words,̀ 1(X)1,+ is the space of positive probability measures onX. Given
a mapξ : X → `1(X)1,+ wherex 7→ ξx, we denote byξx(y) they-coordinate of the
vectorξx.

For a functionf : Γ→ R andγ ∈ Γ we use the standard notation

(γ · f )(x) = f (γ−1x)

for all x ∈ Γ. We recall below the standard and useful in our case characteriza-
tions of amenability, general references on this topic are [BHV, Appendix G], [Pi],
[Gre].

Definition 1.2. A finitely generated groupΓ is amenable if any of the following
equivalent conditions is satisfied:

(i) (Invariant Mean Condition)There exists a left invariant mean on`∞(Γ),
i.e. a positive, linear functional

∫
· dg on`∞(Γ) such that

∫
1 dg = 1 and∫

γ · f dg=
∫

f dg for anyγ ∈ Γ;
(ii) (Approximation by finitely supported measures)For everyε > 0 and R<
∞ there exists a function f∈ `1(Γ)1,+ such that

‖γ · f − f ‖`1(X) ≤ ε

for all |γ| ≤ R and# suppf < ∞.

Følner functions and isoperimetric profiles. The function describing growth of
Følner sets was introduced by Vershik [Ver] and later studied in e.g. [KV], [GŻ],
[Er]. The definition is the following:

Definition 1.3 (Følner function). For an amenable groupΓ define the function
FølΓ : N→ N,

(1) FølΓ(n) = min # suppf ,

with the minimum taken over all f∈ `1(Γ)1,+ satisfying condition (ii) in Definition
1.2 withε = 1

n and R= 1.

The Følner function is usually defined in terms of growth of volumes of Følner
sets, see e.g. [Er]. We leave it to the reader to check that these two definitions
are equivalent when it comes to asymptotics, see e.g. the exposition in [BHV,
Appendix G].

The isoperimetric profile of a finitely generated groupΓ is the functionJΓ : N→
N defined in the following way:

JΓ(n) = sup
#A≤k

#A
#∂A

.

The exact values of FølΓ andJΓ of course depend on the metric, the asymptotics
however do not and are quasi-isometry invariants, thus we in particular omit the
reference to the generating set. The advantage ofJΓ over the Følner function is that
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it is well defined for every finitely generated group, while FølΓ only for amenable
ones. In the latter case these functions carry the same information, see [S-C2] for
a formula giving direct relation.

It is worth noting that the functionsJ and Føl of quotient groups ofΓ give infor-
mation on the large-scale isoperimetry on regular covers of Riemannian manifolds
with fundamental groupπ1(M) = Γ, we refer the reader to Saloff-Coste’s survey
[S-C2] and the references therein for more details.

Another important direction, as mentioned in the introduction, is the connection
between isoperimetric profiles and random walks on groups, we again will not
discuss these in detail here and we direct the reader to the articles [PS-C1] and
[S-C1] which provide the necessary background.

2. P A   

Property A was introduced by Yu in [Yu2], we will use the definition given by
Higson and Roe [HR].

Definition 2.1. A discrete metric space has property A if for every R< ∞ and
ε > 0 there exists a mapξ : X→ `1(X)1,+ and a number S< ∞ such that

(i) ‖ξx − ξy‖`1(X) ≤ ε whenever d(x, y) ≤ R,
(ii) suppξx ⊆ B(x,S) for every x∈ X.

For example, amenable groups have Property A - in Definition 2.1 the function
ξ is given simply by the formulaξγ = γ · f for an appropriately chosenf from
condition (ii) in Definition 1.2.

Other classes of groups with Property A include free and more generally hyper-
bolic groups [Yu2], Coxeter groups [DJ], linear groups [GHW], one-relator groups
[Gu] and many more. In fact the only known groups which don’t have Property
A are the random groups constructed by Gromov [Gro3], containing expanders in
their Cayley graphs. It is also unknown whether Thompson’s groupF has Property
A (see e.g.[AGS]).

Definition 2.2 ([Gro2, 7.E.]). Let X,Y be metric spaces. A function f: X→ Y is a
coarse embedding if there exist non-decreasing functionsϕ−, ϕ+ : [0,∞) → [0,∞)
satisfying

(i) ϕ−(dX(x, y)) ≤ dY( f (x), f (y)) ≤ ϕ+(dX(x, y)) for all x, y ∈ X,
(ii) lim t→∞ ϕ−(t) = +∞.

Note that for quasi-geodesic metric spacesϕ+ can always be chosen to be affine.
If in additionϕ− also can be chosen to be affine thenf is called aquasi-isometric
embedding, and if for some constantC > 0 the image isC-dense inY then the
embedding is in fact a coarse equivalence.

Property A was introduced mainly for the purpose of the following

Theorem 2.3([Yu2]). If a metric space X has Property A then X admits a coarse
embedding into the Hilbert space.

This, on the other hand, has applications to the Novikov Conjecture through the
following remarkable result.
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Theorem 2.4([Yu2]). If a bounded geometry metric space X admits a coarse em-
bedding into a Hilbert space then the coarse index map

µc : lim
d→∞

K∗(Pd(X))→ K∗(C
∗(X))

is an isomorphism. In particular, if X= Γ is a finitely generated group with the
word length metric then the Novikov Conjecture is true forΓ.

In the above statementPd(X) is the Vietoris-Rips complex of the spaceX and
C∗(X) is the Roe algebra associated toX. See e.g. [Yu2] and the references there
for more on Coarse Baum-Connes Conjecture and applications to problems in ge-
ometry.

Also, by the work of Guentner, Kaminker and Ozawa (see [GK1] and [Oz])
Property A for a finitely generated group is equivalent to exactness of the reduced
groupC∗-algebraC∗r (Γ). The reader will find much more information on Property
A and coarse geometry in Roe’s book [Roe1].

3. W F    P A

Let us first define some necessary notions.

Definition 3.1. Let X be a discrete metric space.

(A) For a mapξ : X → `1(X)1,+ satisfying condition (i) in Definition 2.1 with
ε > 0 and R< ∞ denote

SX (ξ,R, ε) = inf S,

SX (ξ,R, ε) ∈ N∪{∞}, where the infimum is taken over all S> 0 satisfying
suppξx ⊆ B(x,S) for every x∈ X.

(B) Define

radX(R, ε) = inf SX (ξ,R, ε),

rad(R, ε) ∈ N ∪ {∞}, where the infimum is taken over all maps satisfying
the conditions in (A) for R andε.

(C) If Γ is a finitely generated group then for given R< ∞, ε > 0 by
radeqv
Γ

(R, ε) ∈ N ∪ {∞} we denote the smallest S for which there exists
a function f ∈ `1(Γ)1,+ with suppf ⊆ B(S) satisfying condition (ii) in
Definition 1.2 for allγ ∈ Γ such that|γ| ≤ R.

In other words, radeqv
Γ

is the notion resulting from restricting (A) and (B) to con-
sidering only functionsξ : Γ → `1(Γ)1,+ given by translates of a single function
f ∈ `1(Γ)1,+, i.e. ξ(γ) = γ · f for everyγ ∈ Γ and for some fixed, appropriately
chosenf ∈ `1(X)1,+.

The following is the main definition in this article.
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Definition 3.2 (Weak Følner function of a metric spaceX). Let X be a metric
space with Property A. Define the functionAX : N→ N by the formula

AX (n) = radX

(
1,

1
n

)
.

Clearly the function AX is well-defined and non-decreasing. We will be inter-
ested in estimating the asymptotic behavior of AX. This does not depend on the
choice ofR = 1 and the sequence1n up to constants, the argument will be given
further in this section.

Example 3.3.Let X be a bounded metric space. Then AX ∼ const. In fact, AX(n) =
diamX for all n large enough.

Example 3.4. Let T be any locally finite tree. Then AT � n. Indeed, recall from
[Yu2] that for a fixedR < ∞ andε > 0 Property A for the tree is constructed
by fixing a pointω on the boundary ofT and taking normalized characteristic
functions of the geodesic segments of length2R

ε on the geodesic ray starting from
x in the direction ofω.

Example 3.5. Let Γ be a finitely generated group with polynomial growth. Then
AΓ � n. In this case the normalized characteristic functions of balls of radiusn do
the job.

We now move on to prove the most natural properties - estimate for subspaces,
direct products and invariance under quasi-isometries. For the first one, we will
use the fact that Property A is hereditary [Tu].

Proposition 3.6. Let Y have Property A and X⊆ Y. Then X has Property A and
for any R< ∞, ε > 0

radX(R, ε) ≤ 3 radY(R, ε)

Proof. For everyy ∈ Y let p(y) ∈ X be a point such thatd(y, p(y)) ≤ 2d(y,X).
Define an isometryI : `1(Y)→ `1(X × Y) by the formula

I f (x, y) =

{
f (y) if x = p(y)
0 otherwise

Let ε > 0 andR < ∞. By definition of Property A there exist a number
S < ∞ and a mapξ : Y → `1(Y) such that‖ξy − ξy′‖`1(Y) ≤ ε if d(y, y′) ≤ R
and suppξy ⊆ B(y,S) for everyy ∈ Y. Defineξ̃ : X→ `1(X)1,+ by the formula

ξ̃x(z) =
∑
y∈Y

Iξx(z, y).

Then it is easy to check that

‖̃ξx − ξ̃x′‖`1(X) ≤ ε

wheneverd(x, x′) ≤ Rand
suppξx ⊆ B(x,3S).

�
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A direct consequence is the following.

Proposition 3.7. Let X⊆ Y be a subspace. ThenAX � AY.

Direct products. We consider direct products with thè1-metric: if X1,X2 are
metric spaces with metricsd1 and d2 respectively then the metric on the direct
product is given by the formula

d(x, y) = d1(x1, y1) + d2(x2, y2),

wherex = (x1, x2) ∈ X1 × X2, y = (y1, y2) ∈ X1 × X2.

Proposition 3.8. Let X1, X2 be countable discrete metric spaces with property A.
Then

A X1×X2 ∼ max
(
AX1,AX2

)
.

Proof. Let R = 1, ε > 0 and let the mapsξ : X → `1(X)1,+, η : Y → `1(Y)1,+

realize Property A forR= 1 andε, for X andY and respectively, with diameters of
the supportsSX andSY respectively. Then the mapξ ⊗ η : X × Y→ `1(X × Y)1,+

defined by

ξ ⊗ η(x,y)(z,w) = ξx(z) ηy(w),

satisfies

supp
(
ξ ⊗ η(x,y)

)
⊆ B

(
(x, y),SX + SY

)
⊆ B

(
(x, y),2 max(SX,SY)

)
.

For R= 1 we also have the following estimate:

‖ξ ⊗ η(x,y) − ξ ⊗ η(x′,y′)‖`1(X×Y) =
∑

z∈X,w∈Y

|ξx(z)ηy(w) − ξx′(z)ηy′(w)|

≤
∑

z∈X,w∈Y

|ξx(z)ηy(w) − ξx(z)ηy′(w)|

+
∑

z∈X,w∈Y

|ξx(z)ηy′(w) − ξx′(z)ηy′(w)|

≤ ‖ξx − ξx′‖`1(X) + ‖ηy − ηy′‖`1(Y) ≤ ε.

The last inequality follows from the fact that sinced((x, y)(x′, y′)) = R = 1 then
eitherx = x′ or y = y′. This proves AX1×X2 � max

(
AX1,AX2

)
. The estimate ”�”

follows from Proposition 3.7. �

Permanence properties of groups with Property A have been extensively studied
in connection to the Novikov Conjecture, see e.g. [Be], [DG], [CDGY], [Tu], so
estimates of this sort are possible also for e.g. free products, extensions, some
direct limits, groups acting on metric spaces etc. It would be interesting to obtain
sharp estimates for AΓ of groups resulting from such constructions.
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Invariance under quasi-isometries.We devote the rest of this section to proving
large-scale invariance of the asymptotics of AX, we will in particular estimate how
does the weak Følner function behave under coarse equivalences that are not nec-
essarily quasi-isometries. Strictly for that purpose forκ,R ∈ N define the function
Aκ,R

X (n) = radX(R, κn). With this definition AX = A1,1
X .

Lemma 3.9. For a fixed R< ∞ andκ ∈ N we have

A1,R
X ∼ Aκ,R

X . �

Lemma 3.10. Let X have Property A. Then for any R,R′ ∈ N we have

A1,R
X ∼ A1,R′

X .

Proof. If R≤ R′ then obviously radX(R, ε) ≤ radX(R′, ε) for anyε and the inequal-
ity ”�” follows. Conversely, assume thatR′ ≤ R. If d(x, y) ≤ R and that we’re
given the functionξ from the definition of Property A forR′ andε. Then by the
uniform quasi-geodesic condition onX (Definition 1.1) withκ equal to the largest
integer smaller thanR/R′, we have

‖ξx − ξy‖`1(X) ≤

κ−1∑
i=0

‖ξxi − ξxi+1‖`1(X) ≤ κεn,

where thex = x0, x1, ..., xk−1, xκ = y are such thatd(x, y) ≤
∑κ

i=0 d(xi , xi+1) and
d(xi , xi+1) ≤ R′. This gives the inequalitySX(ξ,R′, ε) ≤ SX(ξ,R, κε), and conse-
quently

radX(R′, ε) ≤ radX(R, κε).

This together with the previous lemma proves the assertion. �

Having proved that the asymptotics of Aκ,RX depend neither onR nor onκ, as a
consequence we get the desired statement on large-scale behavior of AX.

Theorem 3.11.Let X,Y be metric spaces and let Y have Property A. Let f: X→ Y
be a coarse embedding. Then X has Property A and

AX � ϕ
−1
− ◦ AY.

In particular, if X and Y are quasi-isometric thenAX ∼ AY.

Proof. Let f : X → Y be the coarse embedding with Lipschitz constantL and
distortionϕ−. Since we’re only interested in the asymptotic behavior, we may
assume that for larget ∈ R, ϕ−(t) is strictly increasing. Also by Proposition 3.6
without loss of generality we may assume thatf is onto.

For every pointy ∈ Y choose a unique pointxy in the preimagef −1(y). This
gives an inclusioǹ 1(Y)1,+ ⊆ `1(X)1,+. SinceY has Property A, for everyε > 0
andR < 0 there exists a mapξ : Y → `1(Y)1,+ and a numberS > 0 satisfying
conditions from Proposition 2.1. ChooseR large enough so thatϕ−(R) ≥ 1 and
define a mapη : X→ `1(Y)1,+ ⊆ `1(X)1,+ setting

ηx(z) =

{
ξ f (x)(y) if z= xy,
0 otherwise.
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It is easy to check thatϕ satisfies the required conditions and that

SX(R, ε, η) ≤ ϕ−1
−

(
SY(LR, ε, ξ)

)
.

This, with Lemma 3.9 gives

AX ∼ A1,R
X � ϕ−1

− ◦ A1,LR
Y ∼ ϕ−1

− ◦ AY.

�

Remark 3.12. One can also define another invariant considering the volume of the
supports of functions appearing in the definition of Property A, or volumes of the
sets appearing in the original definition of Property A (see [Yu2]). By the bounded
geometry condition in the first case and the argument in [HR, Lemma 3.5] in the
second, these functions are well-defined for discrete groups and they are quasi-
isometry invariants. This would be closer to the definition of the isoperimetric
profile, however one might run into problems trying to average such invariants in
the case of amenable groups (see the next section).

4. R  F 

In this section we will show that A is indeed a weak version of the function
FølΓ . In order to do this we need to directly relate the numbers rad and radeqv,
this is done in this next Theorem, which was proved by the author in [No2] for
the purpose of distinguishing Property A and coarse embeddability into the Hilbert
space. We recall it together with the proof.

Theorem 4.1 ([No2]). Let Γ be finitely generated amenable group, R≥ 1 and
ε > 0. Then

radΓ(R, ε) = radeqv
Γ

(R, ε) .

Proof. To show the inequality radΓ(R, ε) ≤ radeqv
Γ

(R, ε), given a finitely supported
function f ∈ `1(Γ)1,+ satisfying condition (2) from Definition 1.2 forR > 0 and
ε > 0 and allγ ∈ Γ such that|g| ≤ R, consider the mapξ : Γ→ `1(Γ)1,+ defined by
ξ(γ) = γ · f .

To prove the other inequality assume thatΓ satisfies conditions from (2) of
Proposition 2.1 forR < ∞, ε > 0 with S > 0 realized by the functionξ : Γ →
`1(Γ)1,+. For everyγ ∈ Γ define

f (γ) =
∫
Γ

ξ(g)(γ−1g) dg.

This gives a well-defined functionf : Γ→ R, ξ(g)(γ−1g) as a function ofg belongs
to `∞(Γ) sinceξ(g)(γ) ≤ 1 for all γ,g ∈ Γ.
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First observe that if|γ| > S thenξ(g)(γ−1g) = 0 for all g ∈ Γ, thus f (γ) = 0
whenever|γ| > S. Consequently,

‖ f ‖`1(Γ) =
∑
γ∈B(S)

f (γ) =
∑
γ∈B(S)

∫
Γ

ξ(g)(γ−1g) dg

=

∫
Γ

 ∑
γ∈B(S)

ξ(g)(γ−1g)

 dg =
∫
Γ

1 dg = 1.

Thus f is an element of̀1(Γ)1,+.

If λ ∈ Γ is such that|λ| ≤ R then

‖ f − λ · f ‖`1(Γ) =
∑
γ∈Γ

| f (γ) − f (λ−1γ)|

=
∑

γ∈B(S)∪λB(S)

|

∫
Γ

ξ(g)(γ−1g) dg−
∫
Γ

ξ(g)((λ−1γ)−1g) dg |

=
∑

γ∈B(S)∪λB(S)

|

∫
Γ

ξ(g)(γ−1g) dg−
∫
Γ

ξ(λ−1g)(γ−1g) dg |

=
∑

γ∈B(S)∪λB(S)

|

∫
Γ

(ξ(g)(γ−1g) − ξ(λ−1g)(γ−1g)) dg |

≤

∫
Γ

 ∑
γ∈B(S)∪λB(S)

|ξ(g)(γ−1g) − ξ(λ−1g)(γ−1g)|

 dg

≤

∫
Γ

ε dg = ε,

since ∫
Γ

ξ(g)((λ−1γ)g) dg =

∫
Γ

λ ·
(
ξ(g)((λ−1γ)−1g)

)
dg

=

∫
Γ

ξ(λ−1g)(γ−1g) dg,

this is a consequence of the invariance of the mean.
Thus for the previously chosenR and ε we have constructed a functionf ∈

`1(Γ)1,+ satisfying‖ f − γ · f ‖`1(Γ) ≤ ε whenever 1≤ |γ| ≤ Rand suppf ⊆ B(S) for
the sameS as forξ. This proves the second inequality. �

Since the Følner function measures the volume of the support of a function and
radeqv measures the radius of the smallest ball in which such support is contained,
an immediate consequence is the following
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Theorem 4.2. LetΓ be a finitely generated amenable group. Then

ρΓ ◦ A Γ ≥ FølΓ .

Proof. Since AG(n) = rad(1, 1
n) = radeqv(1, 1

n), the numberρΓ(AΓ(n)) is the volume
of the ball containing suppf , where f minimizes radeqv(1, 1

n). Thus

ρΓ(AΓ(n)) ≥ # suppf ≥ FølΓ(n),

since FølΓ(n) minimizes the volume of suppf for ε = 1
n. �

It follows that the function AΓ in the case of amenable groups can have nontrivial
behavior, as we now explain. Given two finitely generated groupsΓ1 andΓ2 one
defines their wreath product

Γ1 o Γ2 =
(
⊕γ∈Γ1 Γ2

)
o Γ2,

where the action ofΓ2 on (⊕γ∈Γ1Γ2) is by a coordinate shift. Since the wreath prod-
uct preserves amenability, one can wonder how does the function FølΓ1oΓ2 depend
on the functions FølΓ1 and FølΓ2. This was studied in [Ver], [PS-C1], [GŻ] and a
complete answer was given by A. Erschler in [Er], where she proved that

(2) FølΓ1oΓ2 ∼
(
FølΓ1

) FølΓ2 ,

provided that the following condition holds: (?) for any C > 0 there is a K> 0
such that for any n> 0, FølΓ2(Kn) > C FølΓ2(n). This last assumption will be
automatically fulfilled in the cases we will consider, note however that it does not
allow Γ2 to be finite.

Now, using Theorem 4.2, we can relate this to the weak Følner function.

Proposition 4.3. LetΓ1, Γ2 be discrete amenable groups and letFølΓ2 satisfy con-
dition (?). Then

A Γ1oΓ2 � FølΓ2

(
ln FølΓ1

)
.

The proof amounts to recalling the fact that growth of a finitely generated group
is at most exponential. Consequently, since forGk = Z o (. . . (Z o (Z o Z) . . . )︸                      ︷︷                      ︸

k times

the

Følner function satisfies

FølGk ∼ nn .
. .

n︸︷︷︸
k times

,

we obtain

Corollary 4.4. Let Gn be as above. Then

A Gk � nn .
. .

n︸︷︷︸
k−1 times

ln n.

Another example in [Er] is one of a groupΓ with FølΓ growing faster than any
of the above iterated exponents. This of course gives the same conclusion for the
function AΓ.



EXACTNESS AND ISOPERIMETRIC PROFILES 13

Recall also that it is not known whether Property A is satisfied for Thompson’s
groupF. On the other hand it is known that the iterated wreath product

Wk = (. . . (Z o Z) o Z) o . . . ) o Z︸                        ︷︷                        ︸
k times

is a quasi-isometrically embedded subgroup ofF for everyk ∈ N, this was shown
by S. Cleary [Cl] (the article [Cl] covers just the case ofZ o Z and one needs to
extend the argument presented in there in order to get the same statement for the
iterated wreath products. I am very grateful to Sean Cleary for telling me about his
results) and together with Proposition 3.7 and Theorem 3.11 leads to the following
statement:

Corollary 4.5. If Thompson’s group F has Property A then

AF � nk

for every k∈ N.

5. A   AΓ

In this section we will show another method to estimate AX, it is based on the
connection between Property A and asymptotic dimension. In particular we’ll
show a large class of spaces for which AX ∼ n. These spaces will arise as spaces
with finite asymptotic dimension oflinear type, i.e. where the diameter of the
elements of the covers depends linearly on disjointness.

A family U of subsets of a metric space will be calledδ-bounded if diamU ≤ δ
for everyU ∈ U. Two familiesU1, U2 areR-disjoint if d(U1,U2) ≥ R for any
U1 ∈ U1, U2 ∈ U2.

Definition 5.1 ([Gro2]). We say that a metric space X has asymptotic dimension
less than k∈ N, denotedasdimX ≤ k, if for every R< ∞ one can find a number
δ < ∞ and k+ 1 R-disjoint familiesU0, ...,Uk of subsets of X such that

X = U0 ∪ ... ∪Uk

and everyUi is δ-bounded

Asymptotic dimension is a large-scale version of the classical covering dimen-
sion in topology. It is a coarse invariant and a fundamental notion for [Yu1], where
the Novikov Conjecture for groups with finite asymptotic dimension is
proved. Because of this result asymptotic dimension of groups has become a very
actively studied notion, we refer the reader to the articles [BD1], [BD2] and to
[Roe1] and the references there for more on asymptotic dimension of finitely gen-
erated groups. Let us just mention here that examples of groups with finite asdim
include free, hyperbolic, Coxeter groups, free products and extensions of groups
with finite asdim. On the other hand it is easy to see that there are finitely generated
groups which don’t have finite asymptotic dimension - just takeZ o Z or Thomp-
son’s groupF, each of which containsZk as a subgroup for everyk and since such
inclusion is always a coarse embedding and asdimZn = n, it pushes asymptotic
dimension off to infinity.
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The following finer invariant associated to a space with finite asymptotic dimen-
sion was also introduced by Gromov [Gro2, p. 29], see also [Roe1, Chapter 9],
[DZ, Section 4]

Definition 5.2. Let X be a metric space satisfyingasdimX ≤ k. Define the type
functionτk,X : N → N in the following way:τk,X(n) is the smallestδ ∈ N for
which X can be covered by k+ 1 familiesU0, ...,Uk which are all n-disjoint and
δ-bounded.

The type function is also known asdimension functionand it’s linearity is often
referred to asHigson propertyor finite Assouad-Nagata dimension, see the discus-
sion in Section 8. The proof of our next statement adapts an argument of Higson
and Roe [HR], who showed that finite asymptotic dimension implies Property A.

Theorem 5.3. Let X be a metric space satisfyingasdimX ≤ k. Then

AX � τk,X .

Proof. By assumption, for everyn ∈ N, X admits a cover byk+1,τk,X(n)-bounded,
n-disjoint familiesUi , as in definition 5.1. LetU be a cover ofX consisting of all
the sets from all the familiesUi . There exists a partition of unity{ψV}V∈U and a
constantCk depending only onk such that:

(i) eachψ is Lipschitz with constant 2/n;

(ii) sup diam(suppψ) ≤ τk,X(n) + 4n ≤ Ckτk,X(n);

(iii) for every x ∈ X no more thank+ 1 of the valuesψ(x) are non-zero.

For everyψ choose a unique pointxψ in the set suppψ and define

ξn
x =

∑
ψ

ψ(x) δxψ .

Then ifd(x, y) ≤ 1 we see that

‖ξn
x − ξ

n
y‖`1(X) =

∑
ψ

|ψ(x) − ψ(y)| ≤
2
n

C′k,

whereC′k is another constant depending onk only and

supp ξn
x ⊆ B

(
x,Ckτk,X(C′kn)

)
.

Once again by Lemma 3.9 we’re done. �

Thus spaces and groups of finite asymptotic dimension of linear type have AX

linear. The simplest examples of such are Euclidean spaces and trees, and their
finite cartesian products, by an argument similar to the one in Proposition 3.8. It is
also well-known thatδ-hyperbolic groups are in this class, one can quickly deduce
this fact either directly from [Roe2] or from a theorem of Buyalo and Schroeder
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[BS3], which states that every hyperbolic group admits a quasi-isometric embed-
ding into a product of a finite number of trees. In fact, Dranishnikov and Zarichnyi
showed that every metric space with finite asymptotic dimension is equivalent to a
subset of a product of a finite number of trees [DZ], however this equivalence is in
general just coarse and not quasi-isometric, we will give examples illustrating this
in Section 8.

6. T M T

As a corollary of the results presented in the two previous sections we get our
main application, a direct relation between two of the considered large-scale in-
variants: Vershik’s Følner function and Gromov’s type of asymptotic dimension.

Theorem 6.1.LetΓ be a finitely generated amenable group satisfyingasdimΓ ≤ k.
Then there exists a constant C depending only on k such that

FølΓ � ρΓ ◦C τk,Γ.

Proof. The estimate follows from Theorem 4.2 and Theorem 5.3. �

A general conclusion coming from this result is that several asymptotic invari-
ants considered in the literature, namely: decay of the heat kernel, isoperimetric
profiles, Følner functions, type function of asymptotic dimension, our function AΓ

and distortion of coarse embeddings, in the case of amenable groups all carry very
similar information. We will show below how to use this fact to obtain results in
various directions.

Remark 6.2. The constantC in the above formula is a technical consequence of
the estimates in the proof of Theorem 5.3 and it doesn’t seem that we can get rid
of it a priori. We can however omit it once we know for example thatτ satis-
fies condition (?) from Section 4: for everyC there exists a numberK such that
Cτk,X(n) ≤ τk,X(Kn) for all n. This is a very mild condition, in particular it holds
for all common asymptotics. Another situation when the constantC does not play a
role is when the upper estimate on the growthρΓ is known. For the purposes of ap-
plications in Sections 7 and 8 we will be interested only in groups with exponential
growth and we will omit the constantC from now on.

7. E   

We will use our main theorem and asymptotic dimension to get precise estimates
of the function FølΓ for some groups. Although these estimates are known (see e.g.
[PS-C1]), our purpose is to convince the reader that even though in Theorem 6.1
we, loosely speaking, pass between the volume of a set and the volume of the ball
which contains it, which one can expect will cause some loss of information in the
exponential growth case, we can in fact obtain sharp estimates on FølΓ. To do this
we will use the following consequence of Theorem 6.1.

Corollary 7.1. If Γ is an amenable group with exponential growth and finite as-
ymptotic dimension of linear type then

FølΓ ∼ en .
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The statement follows from Theorem 6.1 and a theorem of Coulhon and Saloff-
Coste [CS-C], stating that for groups of exponential growth the function Føl grows
at least exponentially.

It should be also pointed out that the question of existence of amenable groups
with exponential growth and at most exponential Følner function was first asked
by Kaimanovich and Vershik in [KV].

Example 7.2. The first example we consider are groupsSA = Z
2 oA Z, where

A ∈ SL2(Z) satisfies| trace(A)| > 2, usually one takes just

A =

(
2 1
1 1

)
.

The groupSA has exponential growth and it is a discrete, quasi-isometrically em-
bedded lattice in the group Sol used by Thurston to describe one of the geometries
in his geometrization conjecture. The group Sol is quasi-isometric to a undistorted
horosphere inH2 × H2, a product of two hyperbolic planes. The latter has finite
asymptotic dimension of linear type, this can be seen directly or from the fact that
the hyperbolic plane embeds quasi-isometrically into a product of trees ([BS2]),
and so we recover (see e.g. [PS-C1, Section 3]) the estimate

FølSA ∼ en.

Example 7.3. The solvable Baumslag-Solitar groups,

BS(1, k) = 〈 a,b : aba−1 = bk 〉,

wherek > 1, constitute our second example. These groups are metabelian but not
polycyclic and they act properly, cocompactly by isometries on a warped product
Xk = R×Tk, whereTk is an infinite, oriented,k+1-regular tree. For every vertexv
in this tree we have 1 incoming edge andk edges going out ofv, and we orient the
incoming edge towards the vertexv. Metrically, the setR× r wherer is an infinite,
coherently oriented line, is an isometric copy of the hyperbolic plane, see [FM]
for a detailed construction of the spaceXk. Since both the tree and the hyperbolic
plane have finite asymptotic dimension of linear type, it is easy to check by a direct
construction of coverings or of a quasi-isometric embedding into an appropriately
chosen space thatXk also has finite asymptotic dimension of linear type. Thus,
since by the Milnor-̌Svarc Lemma BS(1, k) is quasi-isometric toXk, we get (see
[PS-C1, Theorem 3.5])

FølBS(1,k) ∼ en.

Example 7.4.Assume we are given two finitely generated amenable groupsG and
H and an exact sequence

(3) 0−→ K −→ Γ −→ H −→ 0,

i.e. Γ is an extension ofK by H. Assume also thatK is undistorted inΓ (recall
that a subgroupH is undistortedin the ambient groupΓ if the embedding ofH
as a subgroup is quasi-isometric) and that bothK and H have finite asymptotic
dimension of linear type. Under these assumptions, in [BDLM] a Hurewicz-type
theorem for asymptotic dimension of linear type is proved, which in particular
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implies thatΓ also has finite asymptotic dimension of linear type. In our situation
this yields the following

Corollary 7.5. Let K,Γ,H be finitely generated amenable groups, sequence (3) be
exact. Assume that K is undistorted inΓ and that the latter has exponential growth.
If H and K have finite asymptotic dimension of linear type then

FølΓ ∼ en.

Note however that this doesn’t apply to the groupSA considered above. In that
example the fiberZ2 is well-known to be exponentially distorted in the ambient
extension.

The above of course raises the question, which amenable groups with exponen-
tial growth have finite asymptotic dimension of linear type? Section 8 is devoted
to building examples which badly fail this condition. One speculation however is
the following. A groupΓ hasPrüfer rankκ if κ is the smallest integer such that
every finitely generated subgroup ofΓ can be generated by at mostκ elements. For
example, ifΓ is metabelian, has exponential growth and no torsion then finiteness
of the Pr̈ufer rank is equivalent to the fact thatΓ does not containZ o Z as a sub-
group. In [PS-C2, Sect.8, Q. 3] the authors ask whether solvable groups with finite
Prüfer rank satisfy FølΓ ∼ en. In our context one might ask the following question,
suggested by L. Saloff-Coste:do solvable groups of finite Prüfer rank have finite
asymptotic dimension of linear type?

8. A   

There are two folk questions concerning asymptotic dimension and its type func-
tion:

(Q.1) How to build natural examples of finitely generated groups withτk,Γ grow-
ing faster than linearly for some k?Most of the known examples of groups
with finite asymptotic dimension have linear type and to the author’s best
knowledge no examples of groups with other behavior of the type function
were known.

(Q.2) Assume we have an example like in (Q.1), withasdimΓ ≤ k andτk,Γ � n.
Can we find k′ > k such thatτk′,Γ will be linear?

These questions, although quite natural, become even more relevant if one iden-
tifies after Dranishnikov and Zarichnyi [DZ, Section 4] asdim with linear type as
the large-scale analog of the Assouad-Nagata dimension [As], [LS], which is an in-
variant in the Lipschitz category of metric spaces. The precise definition in our set-
ting is simply the following:a metric space X has Assouad-Nagata dimension≤ k
if it satisfiesasdimX ≤ k andτk,X � n. The above questions can be then rephrased
in the following way: (Q.1)How to build finitely generated groups with Assouad-
Nagata dimension strictly greater than asymptotic dimension?(Q.2) Does finite
asymptotic dimension imply finite Assouad-Nagata dimension?

We will use Theorem 6.1 to answer both questions and build some interesting
examples of groups with finite asymptotic dimension. For any non-trivial finite
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groupH and fork = 1,2,3, . . . consider the groupΓ(1)
k = H o Zk. In the simplest

caseH = Z/2Z the groupΓk is a lamplighter group (see e.g. [GŻ], [S-C1]).
We have asdimΓ(1)

k = k. To see asdimΓ(1)
k ≤ k one needs to appeal to re-

cent work of Dranishnikov and Smith [DS], in which they extend the notion of
asymptotic dimension to allcountablegroups. And so observe that by [DS, Theo-
rem 2.1], the infinitely generated countable group⊕z∈ZkH (equipped with a proper
length function inherited fromΓ(1)

k ) has asymptotic dimension zero, since every of
its finitely generated subgroups is finite. SinceZk has asymptotic dimensionk, the
semi-direct product

(
⊕z∈Zk H

)
o Zk is of asymptotic dimension at mostk, by the

Hurewicz-type theorem in [DS]. Then the inclusion ofZk in Γ(1)
k as a subgroup

gives asdimΓ(1)
k � k− 1.

Now, by Equation (2) in Section 4 we have

Føl
Γ

(1)
k
∼

(
FølH

)Føl
Zk ∼ e(nk).

For anyk′ ≥ k, Theorem 6.1 gives

e(nk) � ρ
Γ

(1)
k
◦ τk′,Γ(1)

k
,

but this implies
nk � τk′,Γ(1)

k
,

since the growth ofΓ(1)
k is exponential.

Now take the groupΓ(2)
k = H oΓ(1)

k . By the same argument as before asdimΓ(2)
k =

k, and again by Theorem 6.1 for anyk′ we get

e

(
e(nk)

)
� ρ

Γ
(2)
k
◦ τk′,Γ(2)

k
,

which gives

e(nk) � τk′,Γ(2)
k
.

Iterating this construction we get for a fixedk and i = 1,2, . . . infinitely many
(depending on different choices ofH) finitely generated groupsΓ(i)

k with asdim
equal exactlyk and type function growing at least as fast as the iterated exponential
function

exp exp. . . exp︸             ︷︷             ︸
i−1 times

nk.

This gives the examples postulated by (Q.1) and answers (Q.2) negatively, since in
particular all estimates are independent ofk′.

Two comments are in order.

Remark 8.1. In the case of asymptotic dimension 1, the construction above is opti-
mal in the following sense. Januszkiewicz andŚwia̧tkowski [J́S] and independently
Gentimis [Ge] proved that if a finitely presented groupG has asymptotic dimen-
sion 1 then it is virtually free, and it follows that it satisfiesτ1,G � n. So the groups
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Γ
(i)
1 for i ≥ 2 are examples showing that results of Januszkiewicz-Świa̧tkowski and

Gentimis will not be true if one drops the requirement of finite presentation. It also
follows that one cannot obtain examples with properties likeΓ(i)

1 and which would
be finitely presented.

Remark 8.2. By [DZ] all the groups considered in this section embed coarsely into
a product of finitely many trees. It might be interesting to note that by arguments
similar to those in Theorem 3.11, any such embedding must be strongly distorting,
i.e. forΓ(i)

k it must satisfy

ϕ− � n
1
k for i = 1

and

ϕ− �
(
ln ln . . . ln︸      ︷︷      ︸

i−1 times

n
) 1

k for i = 2,3, . . .

This contrasts again to the case of hyperbolic groups, which, as mentioned previ-
ously, embed quasi-isometrically into an appropriately chosen product of finitely
many trees [BS2].

Thus, here’s a question. Assume we have any subsetX ⊂ H of an infinite-
dimensional Hilbert space, satisfying asdimX ≤ k < ∞. Is it true thatτk,X � n?
If so, conclusions similar to the ones in this remark would hold for embeddings
into the Hilbert space. A similar statement is not true for AΓ, we will discuss the
example below, in the section on compression.

9. F    

AΓ and Hilbert space compression.As mentioned previously, Property A was
introduced as a condition implying coarse embeddability. TheHilbert space com-
pression of X, defined by Guentner and Kaminker [GK2], is the supremum of all
the 0≤ α ≤ 1 such that the lower bound in Definition 2.2 satisfiesϕ− � nα. See
also [AGS], [CN], [BS1].

Observe that the function AX gives estimates from below on the compression,
since using the standard construction of a coarse embedding adapted to the space
`1 (see [Yu2], [No1]) we can construct a sequence of embeddings into`1 with ϕ− �(
A−1

X

)α for everyα < 1. Then, sincè1 has compression12 in `2, by composing we

get a family of coarse embedding into`2 satisfyingϕ− �
(
A−1

X

)α/2. For example, if
AX is linear this means that the compression number is at least1

2.
It is easy to see however that these estimates are not sharp - indeed, for hyper-

bolic groups we get an estimate on compression from below by1
2, but it was shown

in [BS1] that hyperbolic groups have Hilbert space compression 1 (see also [GK2]
for the same fact for the free group). However even though AΓ does not give the
best possible estimates, it can detect non-zero compression (cf. Question 1.12 in
[AGS]), for example in the following sense:if AX is polynomial then the Hilbert
space compression of X is non-zero.
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Assume now that a metric space has Property A. It is natural to ask whether
the best compression comes from a ’Property A-embedding’. More precisely, does
there exist a finitely generated groupΓ with Property A and a coarse embedding
of Γ into the Hilbert space for which the distortionϕ− grows faster than for any
embedding constructed from Property A? It is clear to us that the answer is posi-
tive. The example we have in mind are the groupsWk = (. . . (Z o Z) o Z) o . . . ) o Z
discussed in Section 4 . Indeed, as mentioned there,Wk is a quasi-isometrically
embedded subgroup of the Thompson groupF, which by [AGS] has compression
1
2. Thus the compression ofWk is at least12 regardless ofk, but AWk � nk, so for
k large enough any embedding constructed from Property A should have signifi-
cantly worse distortion than of exponentα = 1

2. We don’t however have a rigorous
proof establishing these claims, since formally it is not clear at all whether our
construction of the embedding from Property A is the most efficient one.

Note thatWk also provide the examples mentioned at the end of Remark 8.2.
Indeed, since each AWk is embedded into the Hilbert space with compression1

2,
then fork ≥ 3 the coarse copỹWk ⊆ H of Wk satisfies ÃWk

� n.
We also want to point out that another estimate on compression of spaces of

polynomial growth, which uses Property A can be found in [Te].

Type of asymptotic dimension.Apart from the ones already mentioned in sec-
tions 7 and 8 we have several questions that also seem interesting:

(Q.4) Polycyclic groups have finite asymptotic dimension by [BD2]. For poly-
cyclic groups of exponential growth we also have FølΓ ∼ en (see [PS-C1,
Theorem 3.4]), so FølΓ does not obstruct linearity of the type of asymp-
totic dimension. Do polycyclic groups have finite asymptotic dimension of
linear type?

(Q.5) Can one find examples similar to the ones in Section 8 but with subex-
ponential volume growth? Note that groups of intermediate growth often
have infinite asymptotic dimension.

(Q.6) What is the optimal upper bound on the type ofΓ(i)
k ? In particular, is it true

thatτk,HoZk ∼ nk for a finite groupH?
(Q.7) Find examples of groups with finite asdim and strictly larger but still finite

Assouad-Nagata dimension. If these exists, how large can the difference of
these dimensions be?

Random walks on non-amenable groups?As mentioned already several times in
the text, the Følner function of an amenable group can be connected with random
walks on the group, it gives estimates on the decay of the heat kernel. In the
case of non-amenable groups however we don’t expect any connection between
isoperimetry and weak Følner function or type of asymptotic dimension, since for
example for hyperbolic groups the isoperimetric profile satisfiesJ ∼ const while
the other two functions are always linear.
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