ON EXACTNESS AND ISOPERIMETRIC PROFILES OF
DISCRETE GROUPS

PIOTR W. NOWAK

Asstract. We introduce a quasi-isometry invariant related to Property A and
explore its connections to various other invariants of finitely generated groups.
This allows to establish a direct relation between asymptotic dimension on one
hand and isoperimetry and random walks on the other. We apply these results to
reprove sharp estimates on isoperimetric profiles of some groups and to answer
some questions in dimension theory.

A geometric characterization of amenable groups says that amenability is equiv-
alent to existence of sequence of Faglner sets in the group. The degree of "how
amenable” the group is can be measured by the growth rate of Fglner sets for a
fixed set of generators - this is the so calkadner functionof an amenable group,
it was introduced by Vershik in the 70’s (see Section 1 for definitions).

On the other hand one can study after Gromovisloperimetric profileof any
discrete group, i.e. a quantitative dependance between the volumes @ arset
its boundarydA. It is a consequence of Fglner’s characterization of amenability
that in the case of amenable groups finding the asymptotics of the Falner function
is equivalent to finding those of the isoperimetric profile. These functions also
turned out to play a role in probability theory on groups after they were linked with
random walks and the decay of the heat kernel by Varopoulos.

In [Yu2] Guoliang Yu introduced Property A, a weak, metric amenability condi-
tion. In this article we introduce a functioni® N — N which is a weak version of
Vershik’s Fglner function. It is well defined for every discrete, locally finite metric
spaceX with Property A and it measures, roughly speaking, how well is Property A
satisfied for the given space. Xf= T is a finitely generated group equipped with a
word length metric (this is the situation which interest us the most) then a theorem
due to Guentner, Kaminker and Ozawa [(3KOZ] says thafl” has Property A if
and only if the reduced group*-algebraC; (') is exact, thus the function/Acan
be also interpreted as a measure of exactness of a discrete group.

We gain several benefits from introducing the function A. First, it is a quasi-
isometry invariant. Second, it has the advantage over the classical Fglner function
that, just as Property A, it is well defined for much larger class of groups, which
includes alls-hyperbolic groups, free products and many other non-amenable ex-
amples.
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The main feature of Ais that it is connected to other asymptotic invariants and
can be estimated in many ways. And so after going over the preliminaries, defini-
tions and basic properties in the first three sections, in Sggtion 4 we show a direct
link between Vershik’s classical Fglner function and our weak Fglner function.
This connection is quite natural, after all Property A is modeled after amenability.
Formally our estimate is obtained through an averaging argument and allows to
exhibit examples of groups with weak Fglner functions growing arbitrarily fast. It
also follows that if Thompson’s groulp would turn out to have Property A then
Afr must grow faster than any polynomial.

In [Grog] Gromov introduced the notion of asymptotic dimension, a large-scale
version of topological covering dimension. In sectign 5 we employ the fact that
finite asymptotic dimension implies Property A to estimaie More precisely,

a metric space with finite asymptotic dimension has an assodigpedfunction

also defined in[[Grg] as the second quasi-isometry invariant arising from the def-
inition of asymptotic dimension. For spaces with finite asymptotic dimension the
estimates we obtain on the weak Fglner function are in terms of this type function.
It follows in particular that-hyperbolic groups have linearrA

It should be visible already from the two paragraphs above thatoibines
the asymptotics arising in amenability with those arising in large-scale dimension
theory. This relation between asymptotic dimension and isoperimetry, formulated
rigorously in Theorenj 6]1, is our main application of the function AConse-
guently this also establishes a connection between asymptotic dimension and the
decay of the heat kernel. The latter is one of the central themes in the study of ran-
dom walks on finitely generated groups, we refer the reader to the arficles;|PS-C
[S-C4] and [CS-CV] for a comprehensive overview of this subject.

These observations allows us to obtain results ffedént directions. As an
example of an application to dimension theory, in Sedtion 8 we construct for every
k=1,2,3,... infinitely many finitely generated groups with asymptotic dimension
equal tok and infinite Assouad-Nagata dimension. In particular, this class contains
the lamplighter groups. It also follows that these groups don't behave very well
under coarse embeddings into finite products of trees, this contrasts with the case of
hyperbolic spaces and groups, which embed quasi-isometrically into appropriately
chosen products of this type ([BJ$[BS3]). We also show that our results can give
sharp estimates on isoperimetric profiles, this is done in Section 7 by reproving,
using asymptotic dimension methods, these sharp estimates for some examples.

Finally in the last section we briefly discuss possible further applicationg of A
such as the one to the Hilbert compression of metric spaces (sed) @i we list
some questions that remain open.

During the course of this work | have benefited greatly from enlightening and
stimulating conversation with Alexander Dranishnikéwiatos’:aw Gal, John Roe,
Laurent Salff-Coste, Mark Sapir and Guoliang Yu. | am deeply grateful for these
discussions and many very useful suggestions.
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1. NECESSARY PRELIMINARIES

The definitions and some of the results work in a general setting of metric
spaces, but we will mostly specialize to finitely generated groups with word length
metric.

Asymptotics. We will usually think of a functionf : N — N as a piecewise
linear functionf : R — R, determined by it's values on the integers. We don't
lose any information this way since all the functions considered in this article are
nondecreasing.

Given two functionsf,g : N —» N we write f < gif f(n) < C,9(Czn) for
some constantS;,Cy, andf ~ gif f < gandg < f. We will write f < g if the
inequality is strict, i.e.f < g but it is not true thatf ~ g. We will also often say
that f is linear if f(n) < n, polynomial if f(n) < n* for somek € N and so on.

We will sometimes write the inversi? of a function for which it is not clear if
it has an actual inverse. What we mean by this is the inverse of a invertible function
that has the same asymptoticsfas

Discrete metric spaces.We are going to consider discrete metric spaces which
are geodesic on the large scale.

Definition 1.1. A metric space is uniformly quasi-geodesic if there exist constants
C,L > Osuch that for any yy € X there exists a sequence=xxi, X . .., Xn_1, Xn =
y of points in X such that n depends only di,¢) and

D d(x%, %41) < Cd(x.y)
i=1
where % = X, X, = y and dX;, Xi+1) < L.

A discrete metric spack¥ hasbounded geometiy for every R > 0 there exists
a numberNV(R) > 0 such that for every € X,

#B(x,R) < N(R)

holds. Such a space is necessarily countable.

All the metric spaces under consideration are assumed to have integer-valued
metric, to be of bounded geometry and uniformly quasi-geodesic. For convenience
we assume that quasi-geodesic condition is satisfied with @ith L = 1, just
like in the case of finitely generated groups with the word length metric. All these
conditions are not very restrictive.

Volume growth. We will always assume that our finitely generated groups are
equipped with a proper word length metric obtained from a finite, symmetric gen-
erating set and we will denote lyy| the length functionfy| = d(y, €). We will use

the notationB(r) = B(e,r) = {g eI : |gl < r } for the ball of radiug inT. The
symbolpr will be reserved for volume growth @f:

pr(n) = #B(n).
Growth of any finitely generated group is either exponential~ €") or subexpo-
nential.
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Amenability. Let X be a set. Define
(1(X)1+ ={f € 1(X) : £ >0,[If|l1 =1}.

In other words/1(X)1.+ is the space of positive probability measuresorGiven
amapé : X — £1(X)1+ wherex - &, we denote byy(y) they-coordinate of the
vectoréy.

For a functionf : " —» R andy € I" we use the standard notation

(- DX =f(r%
for all x € I'. We recall below the standard and useful in our case characteriza-

tions of amenability, general references on this topiclare [BHV, Appendix G], [Pi],
[Gre].

Definition 1.2. A finitely generated group is amenable if any of the following
equivalent conditions is satisfied:

() (Invariant Mean Condition) There exists a left invariant mean ér(I),
i.e. a positive, linear functionaf— dg on‘.(I') such thatfl dg=1land
[v-fdg= [ fdgforanyyeT;

(i) (Approximation by finitely supported measureByr everys > 0 and R<
oo there exists a function € ¢1(I')1 4 such that

lly - f = fllpoy <&
for all |y| < R and# suppf < .

Felner functions and isoperimetric profiles. The function describing growth of
Foalner sets was introduced by Vershik [Ver] and later studied in e.gl [KMA],[G
[Ex]. The definition is the following:

Definition 1.3 (Falner function). For an amenable group’ define the function
Fol : N - N,

1) Fal(n) = min# suppf,
with the minimum taken over all € £1(I')1 , satisfying condition (ii) in Definition

withe = L and R= 1.

The Fglner function is usually defined in terms of growth of volumes of Fglner
sets, see e.g/ [Er]. We leave it to the reader to check that these two definitions
are equivalent when it comes to asymptotics, see e.g. the exposition in [BHV,
Appendix G].

The isoperimetric profile of a finitely generated grduis the functionJr : N —

N defined in the following way:

HA
Jr(n) = sup—.
() #ASE#aA

The exact values of Fgland Jr of course depend on the metric, the asymptotics
however do not and are quasi-isometry invariants, thus we in particular omit the
reference to the generating set. The advantage ofer the Fglner function is that
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it is well defined for every finitely generated group, whileFahly for amenable
ones. In the latter case these functions carry the same information, segf{8-C
a formula giving direct relation.

It is worth noting that the function$ and Fgl of quotient groups &fgive infor-
mation on the large-scale isoperimetry on regular covers of Riemannian manifolds
with fundamental group(M) = T, we refer the reader to Sa&feCoste’s survey
[S-G;] and the references therein for more details.

Another important direction, as mentioned in the introduction, is the connection
between isoperimetric profiles and random walks on groups, we again will not
discuss these in detail here and we direct the reader to the arficles;|RBwC
[S-C4] which provide the necessary background.

2. PROPERTY A AND ALL THAT

Property A was introduced by Yu in [¥h we will use the definition given by
Higson and Roe [HR].

Definition 2.1. A discrete metric space has property A if for every<Ro and
e > Othere exists amap: X — ¢1(X)1+ and a number & oo such that

(1) lléx = Eylleyy < € whenever (k. y) <R,
(il) suppéx € B(x, S) for every xe X.

For example, amenable groups have Property A - in Definfition 2.1 the function
¢ is given simply by the formulg, = y - f for an appropriately choseh from
condition (i) in Definition[1.2.

Other classes of groups with Property A include free and more generally hyper-
bolic groups|[Yy], Coxeter groups [DJ], linear groups [GHW], one-relator groups
[Gu] and many more. In fact the only known groups which don’t have Property
A are the random groups constructed by Gromov Firoontaining expanders in
their Cayley graphs. Itis also unknown whether Thompson'’s gkohps Property
A (see e.gl[AGS]).

Definition 2.2 (J[Grog, 7.E.]). Let X Y be metric spaces. A function K - Y isa
coarse embedding if there exist non-decreasing functong, : [0, o) — [0, o)
satisfying
() @-(dx(x.y)) < dv(f(X), f(¥)) < o, (dx(xy)) forall x,ye X,
(i) 1M e @_(t) = +oo.
Note that for quasi-geodesic metric spaggsan always be chosen to bine.
If in addition ¢_ also can be chosen to béiae thenf is called aguasi-isometric
embedding, and if for some constabt> 0 the image i<-dense inY then the
embedding is in fact a coarse equivalence.
Property A was introduced mainly for the purpose of the following

Theorem 2.3([Yuy]). If a metric space X has Property A then X admits a coarse
embedding into the Hilbert space.

This, on the other hand, has applications to the Novikov Conjecture through the
following remarkable result.
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Theorem 2.4([Yu2]). If a bounded geometry metric space X admits a coarse em-
bedding into a Hilbert space then the coarse index map

pe : lim K. (Pa(X)) — K.(C(X))

is an isomorphism. In particular, if X T is a finitely generated group with the
word length metric then the Novikov Conjecture is truelfor

In the above statemeify(X) is the Vietoris-Rips complex of the spa&eand
C*(X) is the Roe algebra associatedXo See e.qg.[[Yt] and the references there
for more on Coarse Baum-Connes Conjecture and applications to problems in ge-
ometry.

Also, by the work of Guentner, Kaminker and Ozawa (see {[Gihd [OzZ])
Property A for a finitely generated group is equivalent to exactness of the reduced
groupC*-algebraC; (I'). The reader will find much more information on Property
A and coarse geometry in Roe’s boOk [Rpe

3. WEAK F@LNER FUNCTIONS ASSOCIATED TO PROPERTY A

Let us first define some necessary notions.

Definition 3.1. Let X be a discrete metric space.
(A) Foramapé : X — (1(X)1+ satisfying condition (i) in Definitioh 2|1 with
£ > 0and R< oo denote

Sx (£, R ) =inf S,

Sx (£, R, &) € NU{eo}, where the infimum is taken over all:S0 satisfying
suppéx € B(x, S) for every xe X.

(B) Define
radk(R. &) = inf Sx (£, R &),

radR, €) € N U {oo}, where the infimum is taken over all maps satisfying
the conditions in (A) for R and.

(C) If T is a finitely generated group then for given R o, ¢ > 0 by
radi™(R £) € N U {oo} we denote the smallest S for which there exists
a function f € ¢1(I)1.+ with suppf < B(S) satisfying condition (ii) in
Definition[1.2 for ally € T such thaty| < R.

In other words, ra‘f:ﬂ"is the notion resulting from restricting (A) and (B) to con-
sidering only functiong : I' — ¢1(I')1+ given by translates of a single function
f e 1)1+, i.e. &(y) = y - f for everyy e I and for some fixed, appropriately
chosenf € ¢1(X)1+.

The following is the main definition in this article.
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Definition 3.2 (Weak Fglner function of a metric spaceX). Let X be a metric
space with Property A. Define the functidg : N — N by the formula

Ax (n) = rady (1, %)

Clearly the function A is well-defined and non-decreasing. We will be inter-
ested in estimating the asymptotic behavior of. AThis does not depend on the
choice ofR = 1 and the sequen(# up to constants, the argument will be given
further in this section.

Example 3.3.Let X be a bounded metric space. Theg A const. In fact, A(n) =
diamX for all n large enough.

Example 3.4. Let T be any locally finite tree. Then+A< n. Indeed, recall from
[Yus] that for a fixedR < o ande > O Property A for the tree is constructed
by fixing a pointw on the boundary off and taking normalized characteristic
functions of the geodesic segments of Ienéﬁmn the geodesic ray starting from
xin the direction ofw.

Example 3.5. Let I be a finitely generated group with polynomial growth. Then
Ar < n. In this case the normalized characteristic functions of balls of raddes
the job.

We now move on to prove the most natural properties - estimate for subspaces,
direct products and invariance under quasi-isometries. For the first one, we will
use the fact that Property A is hereditdry [Tul].

Proposition 3.6. Let Y have Property A and X Y. Then X has Property A and
forany R< o0, >0

radk(R, &) < 3rad/(R ¢)

Proof. For everyy € Y let p(y) € X be a point such thad(y, p(y)) < 2d(y, X).
Define an isometry : ¢1(Y) — £1(X X Y) by the formula

fly) if x=p(y)
Ti(xy) = { 0 otherwise

Lete > 0 andR < oo. By definition of Property A there exist a number
S < wandamap : Y — £1(Y) such thatléy — &ylley) < eif diy,Y) < R
and supgy C B(y, S) for everyy € Y. Define¢ : X — £1(X)1+ by the formula

&@) = ) I&(2Y).

yeY
Then it is easy to check that

ll€x — Exlleyx) < &

wheneverd(x, X') < Rand
suppéx € B(x, 3S).
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A direct consequence is the following.
Proposition 3.7. Let XC Y be a subspace. Théy < Ay.

Direct products. We consider direct products with thg-metric: if X1, X are
metric spaces with metriod; andd, respectively then the metric on the direct
product is given by the formula

d(x,y) = di(x1, y1) + da(X2, ¥2)s
wherex = (X1, X2) € X1 X X2, Y = (Y1, ¥2) € X1 X Xa.

Proposition 3.8. Let X;, Xz be countable discrete metric spaces with property A.
Then

A X1xXo ~ max(Axl, sz) .

Proof. LetR = 1,& > O and letthe mapsg : X — 61(X)1+, 7 : Y — £1(Y)1+
realize Property A foR = 1 andg, for X andY and respectively, with diameters of
the supportSyx andSy respectively. Thenthe mape n : X XY — £1(X X Y) 1+
defined by

E®@ Ny (ZW) = Ex(D ny(W),
satisfies
supp(£®7(xy)) € B((X.Y).Sx + Sy) € B((x.y).2 maxSx. Sy)).

ForR = 1 we also have the following estimate:

D 1Ex@nyw) - Ex @y (W)

zeX,weY

D 1Ex@ny(w) — Ex(@ny (W)

zeXweY

+ D 6@y (W) - Ex@ny (W)

zeXweY

llE ® n(xy) — € ® N(xe y)lley(xx)

IA

IA

I€x — Exlleyx) + llmy — ny lleyey) < &.

The last inequality follows from the fact that sind€x, y)(X,y")) = R = 1 then
eitherx = X" ory = y'. This proves A xx, < max(Ax,,Ax,). The estimate 2”
follows from Propositiof 3]7. O

Permanence properties of groups with Property A have been extensively studied
in connection to the Novikov Conjecture, see elqg.! [Bel, [DG], [CDGY], [Tu], so
estimates of this sort are possible also for e.g. free products, extensions, some
direct limits, groups acting on metric spaces etc. It would be interesting to obtain
sharp estimates foryof groups resulting from such constructions.
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Invariance under quasi-isometries. We devote the rest of this section to proving
large-scale invariance of the asymptotics gf, Ave will in particular estimate how
does the weak Fglner function behave under coarse equivalences that are not nec-
essarily quasi-isometries. Strictly for that purposedd® € N define the function
ASR(n) = radk(R ). With this definition A = A%™.
Lemma 3.9. For a fixed R< co and« € N we have

1R KR

AT ~ Ay O
Lemma 3.10. Let X have Property A. Then for anyR € N we have
1R LR

AT~ AT
Proof. If R < R then obviously rag(R, £) < radk(R’, &) for anye and the inequal-
ity ” <" follows. Conversely, assume th&® < R If d(x,y) < R and that we’re
given the functior¢ from the definition of Property A foR" ande. Then by the

uniform quasi-geodesic condition of©(Definition[1.1) with« equal to the largest
integer smaller thaR/R’, we have

k=1
= &yllesg < D Ix = éxallesy < Ken,
i=0

where thex = X, X1, ..., Xk-1, X = Yy are such thatl(x,y) < > ,d(x, X+1) and
d(x, x+1) < R. This gives the inequalitysx (£, R, ) < Sx(&, R «e), and conse-
guently

radk(R’, ) < radk(R, «&).

This together with the previous lemma proves the assertion. |

Having proved that the asymptotics o;’ﬁdepend neither oR nor onk, as a
consequence we get the desired statement on large-scale behavjor of A

Theorem 3.11.Let X Y be metric spaces and let Y have Property A. LeKf— Y
be a coarse embedding. Then X has Property A and

Ax < (,0:1 oAy.
In particular, if X and Y are quasi-isometric thén ~ Ay.

Proof. Let f : X — Y be the coarse embedding with Lipschitz constargnd
distortionp_. Since we're only interested in the asymptotic behavior, we may
assume that for largee R, ¢_(t) is strictly increasing. Also by Propositi¢n 8.6
without loss of generality we may assume tlas onto.

For every pointy € Y choose a unique poing, in the preimagef ~(y). This
gives an inclusiorf1(Y)1+ € ¢1(X)1+. SinceY has Property A, for everyg > 0
andR < O there exists amap : Y — ¢1(Y)1+ and a numbeB > 0 satisfying
conditions from Propositiop 2.1. ChooBelarge enough so that (R) > 1 and
define amap : X — €1(Y)1+ C £1(X)1+ Setting

_ | &) ifz=x,
(2 = { 0 otherwise.
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It is easy to check thag satisfies the required conditions and that

Sx(R &,1) < ¢~X(Sy(LR &,&)).

This, with Lemma 3.9 gives

O

Remark 3.12. One can also define another invariant considering the volume of the
supports of functions appearing in the definition of Property A, or volumes of the
sets appearing in the original definition of Property A ($ee]XBy the bounded
geometry condition in the first case and the argumeritin [HR, Lemma 3.5] in the
second, these functions are well-defined for discrete groups and they are quasi-
isometry invariants. This would be closer to the definition of the isoperimetric
profile, however one might run into problems trying to average such invariants in
the case of amenable groups (see the next section).

4. REeLATION TO FPLNER FUNCTIONS

In this section we will show that A is indeed a weak version of the function
Fal- . In order to do this we need to directly relate the numbers rad arid'rad
this is done in this next Theorem, which was proved by the author in][fo
the purpose of distinguishing Property A and coarse embeddability into the Hilbert
space. We recall it together with the proof.

Theorem 4.1([No2])). LetT be finitely generated amenable group,>R1 and
£> 0. Then

radr(Re) = rad™Re).

Proof. To show the inequality rag(R, ) < rad"(R ), given a finitely supported
function f € ¢1(I')+ satisfying condition[(2) from Definition 1.2 fdR > 0 and
e > 0and ally e T such thatg| < R, consider the map: I — ¢1(I')1 . defined by
&y =v-f.

To prove the other inequality assume thiasatisfies conditions from (2) of
Propositior] Z.JL foR < o0, ¢ > 0 with S > 0 realized by the functiog : I' —
£1(I)1+. For everyy e I' define

() = fr £0) 19 dg

This gives a well-defined functioh: ' — R, £(g)(y~1g) as a function of belongs
to £ (') since&(g)(y) < Lforally,geT.
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First observe that ify| > S then&(g)(ytg) = O for allg € T, thusf(y) = O
whenevety| > S. Consequently,

Iflamy = > f0= >, | &) "9 dg
7€B(S) yeB(S) VT
- [ [ 3 s"(g)(y‘lg)] dg - [1dg - 1
I' \,eB(s) r

Thusf is an element of1(I")1 +.

If A e€TIis suchthail] < Rthen

If =2 fllary = D) 1) = f@™)

yell

_ -1 B “1-1
- Y 1[0 9 de- [ @@ty dg

yeB(S)uaBs) YT

- Y 1 a@o 0 do- [ egoo dol

yeB(S)uaB(S) T

- Y €09 - tan o) dol

yeB(S)UAB(S)

| [ 3 |§(g)(y-lg)—f(rlg)(y-lgn] dg

yeB(S)UAB(S)

fedg = g,
r

fr £Q)((1")g) dg

IA

IA

since

[ 4@y a) g

fr £ g0 1g) dg

this is a consequence of the invariance of the mean.

Thus for the previously choseR and & we have constructed a functidin
{1(IN)1,+ satisfying||f —y - fll,, ) < e whenever I< |y| < Rand supgf € B(S) for
the sameS as foré. This proves the second inequality. O

Since the Fglner function measures the volume of the support of a function and
rad®@ measures the radius of the smallest ball in which such support is contained,
an immediate consequence is the following
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Theorem 4.2. LetI be a finitely generated amenable group. Then
proAr > Fal-.

Proof. Since As(n) = rad(4 1) = rac®®(1, 1), the numbepr(Ar(n)) is the volume
of the ball containing supp, wheref minimizes rad?(1, %). Thus

pr(Ar(n)) > #suppf > Fair(n),

since Fgt(n) minimizes the volume of suppfor ¢ = % O

It follows that the function 4 in the case of amenable groups can have nontrivial

behavior, as we now explain. Given two finitely generated graypsndI’> one
defines their wreath product

[0 = (@yer, [2) < T2,

where the action df; on @,r,I™2) is by a coordinate shift. Since the wreath prod-
uct preserves amenability, one can wonder how does the functipnpFalepend
on the functions Fg| and Fgt,. This was studied in_[Ver], [PS[, [GZ] and a
complete answer was given by A. Erschlerlinl/[Er], where she proved that

() Fot,r, ~ (Fok, ) P,

provided that the following condition holdsx) for any C > 0 there is a K> 0
such that for any n> 0, F@l,(Kn) > CFal,(n). This last assumption will be
automatically fulfilled in the cases we will consider, note however that it does not
allow I'; to be finite.

Now, using Theorern 4]2, we can relate this to the weak Fglner function.

Proposition 4.3. LetI'q, I'; be discrete amenable groups andHetir, satisfy con-
dition (x). Then
Arlzrz > Fﬂlrz ( In Fﬂlrl).

The proof amounts to recalling the fact that growth of a finitely generated group
is at most exponential. Consequently, since@r= Z(...(Z1(Z22)...) the

. L k times
Falner function satisfies

n
Fol, ~n™
2, ,
k times
we obtain

Corollary 4.4. Let G, be as above. Then

n
Ag > n"
Gy =

k-1 times

Inn.

Another example in[Er] is one of a grodpwith Fgl- growing faster than any
of the above iterated exponents. This of course gives the same conclusion for the
function Ar.
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Recall also that it is not known whether Property A is satisfied for Thompson’s
groupF. On the other hand it is known that the iterated wreath product

Wk=(...(ZZ)Z)2...)2 2
k times
is a quasi-isometrically embedded subgrou-dbr everyk € N, this was shown
by S. Cleary([Ql] (the article_ [CI] covers just the caseZf Z and one needs to
extend the argument presented in there in order to get the same statement for the
iterated wreath products. | am very grateful to Sean Cleary for telling me about his

results) and together with Propositjon]3.7 and Thedremn 3.11 leads to the following
statement:

Corollary 4.5. If Thompson's group F has Property A then
Ar > nk

for every ke N.

5. ASYMPTOTIC DIMENSION AND Ar

In this section we will show another method to estimaje Ais based on the
connection between Property A and asymptotic dimension. In particular we’ll
show a large class of spaces for which A n. These spaces will arise as spaces
with finite asymptotic dimension dfnear type i.e. where the diameter of the
elements of the covers depends linearly on disjointness.

A family U of subsets of a metric space will be calletounded if dianU < §
for everyU € U. Two familiesU1, U, areR-disjoint if d(U1,U) > R for any
Ul € 7/(1, U2 € (Uz.

Definition 5.1 ([Groy]). We say that a metric space X has asymptotic dimension
less than ke N, denotedasdimX < k, if for every R< o one can find a number
6 < oo and k+ 1 R-disjoint familiesly, ..., Uy of subsets of X such that

X=UoU...U Uy
and everyl{; is 5-bounded

Asymptotic dimension is a large-scale version of the classical covering dimen-
sion in topology. It is a coarse invariant and a fundamental notion for] [ Vehere
the Novikov Conjecture for groups with finite asymptotic dimension is
proved. Because of this result asymptotic dimension of groups has become a very
actively studied notion, we refer the reader to the articles;|B[BD,] and to
[Rog] and the references there for more on asymptotic dimension of finitely gen-
erated groups. Let us just mention here that examples of groups with finite asdim
include free, hyperbolic, Coxeter groups, free products and extensions of groups
with finite asdim. On the other hand it is easy to see that there are finitely generated
groups which don’t have finite asymptotic dimension - just takez or Thomp-
son’s groupF, each of which containg as a subgroup for evefyand since such
inclusion is always a coarse embedding and a&fima n, it pushes asymptotic
dimension € to infinity.
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The following finer invariant associated to a space with finite asymptotic dimen-
sion was also introduced by Gromav [Grg. 29], see alsd [Rak Chapter 9],
[DZ Section 4]

Definition 5.2. Let X be a metric space satisfyilmgdimX < k. Define the type
functiontx : N — N in the following way: 7k x(n) is the smallest € N for
which X can be covered by-+k1 families Uy, ..., Uy which are all n-disjoint and
6-bounded.

The type function is also known aémension functiomand it's linearity is often
referred to asligson propertyor finite Assouad-Nagata dimensj@ee the discus-
sion in Sectio B. The proof of our next statement adapts an argument of Higson
and Roel[HR], who showed that finite asymptotic dimension implies Property A.

Theorem 5.3. Let X be a metric space satisfyiagdimX < k. Then
Ax < Tix -

Proof. By assumption, for eveny € N, X admits a cover bi+ 1, 7 x(n)-bounded,
n-disjoint families?4;, as in definition 5]J1. Lei/ be a cover oKX consisting of all
the sets from all the familieg(;. There exists a partition of unity }veys and a
constanCy depending only ok such that:

(i) eachy is Lipschitz with constant i,
(i) supdiam(sup@) < 1k x(n) + 4n < Cyricx(N);

(iii) for every x € X no more thark + 1 of the valueg/(x) are non-zero.

For everyy choose a unique poin, in the set supp and define
&= W) o,
v
Then ifd(x,y) < 1 we see that

2
€3 = Elles) = Z{pl W (X) — u(y)l < ﬁclf(,

whereC, is another constant dependingloonly and
suppéx € B(x, Ckrix (Cyn)).
Once again by Lemnja 3.9 we're done. m

Thus spaces and groups of finite asymptotic dimension of linear type have A
linear. The simplest examples of such are Euclidean spaces and trees, and their
finite cartesian products, by an argument similar to the one in Propdsition 3.8. Itis
also well-known thas-hyperbolic groups are in this class, one can quickly deduce
this fact either directly from/[Ra# or from a theorem of Buyalo and Schroeder
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[BS3], which states that every hyperbolic group admits a quasi-isometric embed-
ding into a product of a finite number of trees. In fact, Dranishnikov and Zarichnyi
showed that every metric space with finite asymptotic dimension is equivalent to a
subset of a product of a finite number of trées [DZ], however this equivalence is in
general just coarse and not quasi-isometric, we will give examples illustrating this
in Section 8.

6. THE MAIN THEOREM

As a corollary of the results presented in the two previous sections we get our
main application, a direct relation between two of the considered large-scale in-
variants: Vershik’s Fglner function and Gromov’s type of asymptotic dimension.

Theorem 6.1. LetI" be a finitely generated amenable group satisfyaadiml” < k.
Then there exists a constant C depending only on k such that

Fol < pr o Crkr.
Proof. The estimate follows from Theorgm 4.2 and Theofer 5.3. m

A general conclusion coming from this result is that several asymptotic invari-
ants considered in the literature, namely: decay of the heat kernel, isoperimetric
profiles, Falner functions, type function of asymptotic dimension, our function A
and distortion of coarse embeddings, in the case of amenable groups all carry very
similar information. We will show below how to use this fact to obtain results in
various directions.

Remark 6.2. The constanC in the above formula is a technical consequence of
the estimates in the proof of Theor¢m|5.3 and it doesn't seem that we can get rid
of it a priori. We can however omit it once we know for example thaatis-

fies condition &) from Section 4: for ever{ there exists a numbéf such that
Crix(n) < tkx(Kn) for all n. This is a very mild condition, in particular it holds

for all common asymptotics. Another situation when the con&attes not play a

role is when the upper estimate on the gropths known. For the purposes of ap-
plications in Sections 7 and 8 we will be interested only in groups with exponential
growth and we will omit the constaf from now on.

7. ESTIMATES OF ISOPERIMETRIC PROFILES

We will use our main theorem and asymptotic dimension to get precise estimates
of the function Fal for some groups. Although these estimates are known (see e.g.
[PS-G), our purpose is to convince the reader that even though in Theorém 6.1
we, loosely speaking, pass between the volume of a set and the volume of the ball
which contains it, which one can expect will cause some loss of information in the
exponential growth case, we can in fact obtain sharp estimates pnTeado this
we will use the following consequence of Theoren] 6.1.

Corollary 7.1. If T is an amenable group with exponential growth and finite as-
ymptotic dimension of linear type then

Folk ~ €.
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The statement follows from Theordm 6.1 and a theorem of Coulhon anfi-Salo
Coste [CS-C], stating that for groups of exponential growth the function Fgl grows
at least exponentially.

It should be also pointed out that the question of existence of amenable groups
with exponential growth and at most exponential Fglner function was first asked
by Kaimanovich and Vershik in [KV].

Example 7.2. The first example we consider are groupg = Z2 = Z, where
A € SL,(Z) satisfiegtrace@)| > 2, usually one takes just

2 1
A= ( 2 1 )
The groupSa has exponential growth and it is a discrete, quasi-isometrically em-
bedded lattice in the group Sol used by Thurston to describe one of the geometries
in his geometrization conjecture. The group Sol is quasi-isometric to a undistorted
horosphere irH? x H?, a product of two hyperbolic planes. The latter has finite
asymptotic dimension of linear type, this can be seen directly or from the fact that

the hyperbolic plane embeds quasi-isometrically into a product of trees|]j[BS
and so we recover (see e.g. [Pg-Section 3]) the estimate

FﬂleA ~ e
Example 7.3. The solvable Baumslag-Solitar groups,
BS(LK) = (ab : aba?l=Db"),

wherek > 1, constitute our second example. These groups are metabelian but not
polycyclic and they act properly, cocompactly by isometries on a warped product
Xk = R x T, whereTy is an infinite, orientedk + 1-regular tree. For every vertax
in this tree we have 1 incoming edge dnddges going out of, and we orient the
incoming edge towards the vertexMetrically, the seR x r wherer is an infinite,
coherently oriented line, is an isometric copy of the hyperbolic plane, see [FM]
for a detailed construction of the spa¥g Since both the tree and the hyperbolic
plane have finite asymptotic dimension of linear type, it is easy to check by a direct
construction of coverings or of a quasi-isometric embedding into an appropriately
chosen space thag also has finite asymptotic dimension of linear type. Thus,
since by the MilnorSvarc Lemma BS(K) is quasi-isometric tX,, we get (see
[PS-GJ, Theorem 3.5])

Fﬂ||35(1k) ~ .

Example 7.4. Assume we are given two finitely generated amenable gréupd
H and an exact sequence

3) 0—K-—I—H-—0,

i.e. T is an extension oK by H. Assume also thak is undistorted irT" (recall

that a subgroupH is undistortedin the ambient grouf’ if the embedding oH

as a subgroup is quasi-isometric) and that khétnd H have finite asymptotic
dimension of linear type. Under these assumptions, in [BDLM] a Hurewicz-type
theorem for asymptotic dimension of linear type is proved, which in particular
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implies thatl” also has finite asymptotic dimension of linear type. In our situation
this yields the following

Corollary 7.5. Let KI',H be finitely generated amenable groups, sequdrice (3) be
exact. Assume that K is undistortediand that the latter has exponential growth.
If H and K have finite asymptotic dimension of linear type then

Folk ~ e".

Note however that this doesn’t apply to the gragip considered above. In that
example the fibeZ? is well-known to be exponentially distorted in the ambient
extension.

The above of course raises the question, which amenable groups with exponen-
tial growth have finite asymptotic dimension of linear type? Seg¢tjon 8 is devoted
to building examples which badly fail this condition. One speculation however is
the following. A groupl’ hasPrufer rankx if « is the smallest integer such that
every finitely generated subgrouplotan be generated by at mastlements. For
example, ifl" is metabelian, has exponential growth and no torsion then finiteness
of the Piifer rank is equivalent to the fact thAtdoes not contaiZ : Z as a sub-
group. In[PS-G| Sect.8, Q. 3] the authors ask whether solvable groups with finite
Prifer rank satisfy Fgl~ €. In our context one might ask the following question,
suggested by L. SafibCoste:do solvable groups of finite Prufer rank have finite
asymptotic dimension of linear type?

8. APPLICATIONS TO DIMENSION THEORY

There are two folk questions concerning asymptotic dimension and its type func-
tion:

(Q.1) How to build natural examples of finitely generated groups wihgrow-
ing faster than linearly for some kiflost of the known examples of groups
with finite asymptotic dimension have linear type and to the author’s best
knowledge no examples of groups with other behavior of the type function
were known.

(Q.2) Assume we have an example like in (Q.1), wsdiml” < k andryr > n.
Can we find k> k such thatr, r will be linear?

These questions, although quite natural, become even more relevant if one iden-
tifies after Dranishnikov and Zarichnyi [[DZ, Section 4] asdim with linear type as
the large-scale analog of the Assouad-Nagata dimension [As], [LS], whichis anin-
variant in the Lipschitz category of metric spaces. The precise definition in our set-
ting is simply the following:a metric space X has Assouad-Nagata dimensién
if it satisfiesasdimX < k andry x < n. The above questions can be then rephrased
in the following way: (Q.1)How to build finitely generated groups with Assouad-
Nagata dimension strictly greater than asymptotic dimensi.2) Does finite
asymptotic dimension imply finite Assouad-Nagata dimension?

We will use Theorem 6|1 to answer both questions and build some interesting
examples of groups with finite asymptotic dimension. For any non-trivial finite
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groupH and fork = 1,2,3,... consider the grouﬁ(kl) = HZK. In the simplest
caseH = Z/2Z the grouply is a lamplighter group (see e.q. Z{F [S-C1]).

We have asdirﬁ(kl) = k. To see asdirﬁﬁl) < k one needs to appeal to re-
cent work of Dranishnikov and Smith [DS], in which they extend the notion of
asymptotic dimension to atlountablegroups. And so observe that by [DS, Theo-
rem 2.1], the infinitely generated countable grayp,xH (equipped with a proper
length function inherited frorﬂ(kl)) has asymptotic dimension zero, since every of
its finitely generated subgroups is finite. Sirehas asymptotic dimensidg the
semi-direct product @,.;« H) = ZX is of asymptotic dimension at mokt by the
Hurewicz-type theorem iri [DS]. Then the inclusion@f in l“l(<1) as a subgroup
gives asdin” £ k- 1.

Now, by Equation[() in Sectidr 4 we have

Folw ~ (Fal Yok~ (M),
For anyk’ > k, Theorenj 6]1 gives

(n)
n
e < prﬁl) o Tk,’rf(l),

but this implies
k
n" =< Tk’,l"f})’

since the growth of (" is exponential.

Now take the grou[ﬁf(z) =H zl“(kl). By the same argument as before asﬁﬁ‘h:
k, and again by Theorem 6.1 for akiywe get

()
€ < pr(kz) o Tk’,F(kz)’

which gives
e(nk) < Tk’,l"f(z)'

Iterating this construction we get for a fix&handi = 1,2,... infinitely many
(depending on dierent choices ofd) finitely generated groupES) with asdim
equal exacthk and type function growing at least as fast as the iterated exponential
function

exp exp ..expn.
i—1times

This gives the examples postulated by (Q.1) and answers (Q.2) negatively, since in
particular all estimates are independenk’of

Two comments are in order.

Remark 8.1. In the case of asymptotic dimension 1, the construction above is opti-
mal in the following sense. Januszkiewicz é%\Mi@tkowski [B] and independently
Gentimis [Gé] proved that if a finitely presented grdaghas asymptotic dimen-
sion 1 then itis virtually free, and it follows that it satisfiess < n. So the groups



EXACTNESS AND ISOPERIMETRIC PROFILES 19

Fg) fori > 2 are examples showing that results of Januszkie@im’z;tkowski and
Gentimis will not be true if one drops the requirement of finite presentation. It also
follows that one cannot obtain examples with propertiesIﬂiQeand which would

be finitely presented.

Remark 8.2. By [DZ] all the groups considered in this section embed coarsely into
a product of finitely many trees. It might be interesting to note that by arguments
similar to those in Theorem 3.J11, any such embedding must be strongly distorting,
i.e. forl“ﬂ) it must satisfy

=

p-=<n fori=1

and
1
go_ﬁ(ln.ln‘...lnn)k fori =23, ...
i—1times
This contrasts again to the case of hyperbolic groups, which, as mentioned previ-
ously, embed quasi-isometrically into an appropriately chosen product of finitely
many trees [BE].
Thus, here’s a question. Assume we have any suliset H of an infinite-
dimensional Hilbert space, satisfying asdnx k < co. Is it true thatryx < n?
If so, conclusions similar to the ones in this remark would hold for embeddings
into the Hilbert space. A similar statement is not true for, e will discuss the
example below, in the section on compression.

9. FURTHER APPLICATIONS AND SOME QUESTIONS

Ar and Hilbert space compression.As mentioned previously, Property A was
introduced as a condition implying coarse embeddability. Filieert space com-
pression of Xdefined by Guentner and Kaminkeér [GKis the supremum of all
the 0< @ < 1 such that the lower bound in Definitipn P.2 satisfies> n*. See
also [AGS)], [CN], [BS].

Observe that the function,Agives estimates from below on the compression,
since using the standard construction of a coarse embedding adapted to the space
{1 (see[[Yy], [No]) we can construct a sequence of embeddingsénteith ¢_ >
(Agl)“ for everya < 1. Then, sinceé; has compressio% in £2, by composing we
get a family of coarse embedding intpsatisfyingy_ > (A;(l)“/z. For example, if
Ay is linear this means that the compression number is at %ast

It is easy to see however that these estimates are not sharp - indeed, for hyper-
bolic groups we get an estimate on compression from belogv byt it was shown
in [BS;] that hyperbolic groups have Hilbert space compression 1 (seq alsg} [GK
for the same fact for the free group). However even thouglddes not give the
best possible estimates, it can detect non-zero compression (cf. Question 1.12 in
[AGS]), for example in the following sensd: Ay is polynomial then the Hilbert
space compression of X is non-zero.
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Assume now that a metric space has Property A. It is natural to ask whether
the best compression comes from a 'Property A-embedding’. More precisely, does
there exist a finitely generated groiipwith Property A and a coarse embedding
of I" into the Hilbert space for which the distortign grows faster than for any
embedding constructed from Property A? It is clear to us that the answer is posi-
tive. The example we have in mind are the groMgs= (... (Z1 Z) Z):... ) Z
discussed in Sectidr] 4 . Indeed, as mentioned th&kds a quasi-isometrically
embedded subgroup of the Thompson gréypvhich by [AGS] has compression
3. Thus the compression & is at least} regardless ok, but Ay, > n¥, so for
k large enough any embedding constructed from Property A should have signifi-
cantly worse distortion than of exponent % We don’t however have a rigorous
proof establishing these claims, since formally it is not clear at all whether our
construction of the embedding from Property A is the mdstient one.

Note thatW also provide the examples mentioned at the end of Remalk 8.2.
Indeed, since each is embedded into the Hilbert space with compre@m
then fork > 3 the coarse coka C H of W satisfies l%k > N.

We also want to point out that another estimate on compression of spaces of
polynomial growth, which uses Property A can be found.in [Te].

Type of asymptotic dimension. Apart from the ones already mentioned in sec-
tions[7 and B we have several questions that also seem interesting:

(Q.4) Polycyclic groups have finite asymptotic dimension|by jBOFor poly-
cyclic groups of exponential growth we also haverFgle" (see [PS-@,
Theorem 3.4]), so Fgldoes not obstruct linearity of the type of asymp-
totic dimension. Do polycyclic groups have finite asymptotic dimension of
linear type?

(Q.5) Can one find examples similar to the ones in Section 8 but with subex-
ponential volume growth? Note that groups of intermediate growth often
have infinite asymptotic dimension. _

(Q.6) What is the optimal upper bound on the typ@@f? In particular, is it true
thaty 2 ~ nk for a finite groupH?

(Q.7) Find examples of groups with finite asdim and strictly larger but still finite
Assouad-Nagata dimension. If these exists, how large canfiteeatice of
these dimensions be?

Random walks on non-amenable groups?As mentioned already several times in

the text, the Fglner function of an amenable group can be connected with random
walks on the group, it gives estimates on the decay of the heat kernel. In the
case of non-amenable groups however we don’t expect any connection between
isoperimetry and weak Fglner function or type of asymptotic dimension, since for
example for hyperbolic groups the isoperimetric profile satisfies const while

the other two functions are always linear.
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