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Abstract

The aim of this paper is to extend the framework of the spectral method for
proving property (T) to the class of reflexive Banach spaces and present a condition
implying that every affine isometric action of a given group G on a reflexive Ba-
nach space X has a fixed point. This last property is a strong version of Kazhdan’s
property (T) and is equivalent to the fact that H1(G, π) = 0 for every isometric
representation π of G on X . The condition is expressed in terms of p-Poincaré con-
stants and we provide examples of groups, which satisfy such conditions and for
which H1(G, π) vanishes for every isometric representation π on an Lp space for
some p > 2. Our methods allow to estimate such a p explicitly and yield several in-
teresting applications. In particular, we obtain quantitative estimates for vanishing of
1-cohomology with coefficients in uniformly bounded representations on a Hilbert
space. We also give lower bounds on the conformal dimension of the boundary of a
hyperbolic group in the Gromov density model.

Keywords. Poincaré inequality; Kazhdan’s property (T); affine isometric action; 1-
cohomology.

1 Introduction
Kazhdan’s property (T) is a powerful rigidity property of groups with numerous applica-
tions and several characterizations. In this article we focus on the following description
of property (T): a group G has property (T) if and only if every affine isometric action
of G on the Hilbert space has a fixed point. This characterization can be rephrased as the
cohomological conditionH1(G, π) = 0, for every unitary representation π ofG. A gener-
alization of property (T) to other Banach spaces is then straightforward: we are interested
in conditions implying that every affine isometric action of a given group on a given Ba-
nach space has a fixed point. Such rigidity properties for actions on Banach spaces, as
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well as other generalizations of property (T), and their applications, were studied earlier
in [2, 12, 8, 21].

One very successful method of proving property (T) is through spectral conditions
on links of vertices of complexes acted upon by a group. Variations of such conditions
were studied in [3, 9, 10, 14, 17, 19, 33, 38, 39, 35, 36] in the context of Hilbert spaces
and non-positively curved spaces. Given a group G acting on a 2-dimensional simplicial
complex, one considers the link of a vertex. This link is a finite graph. If for every vertex,
the first positive eigenvalue of the discrete Laplacian is strictly larger than 1/2, then G
has property (T).

The main purpose of this work is to extend the framework of the spectral method,
and some of the rigidity results, beyond Hilbert spaces. Our main result provides such
a framework for the class of reflexive Banach spaces. The difficulty lies in the fact, that
in the Hilbert space case the spectral method relies heavily on orthogonality, in particular
self-duality of Hilbert spaces. When passing to other Banach spaces, dual spaces of certain
Banach spaces and of their subspaces have to be identified, and this is often a difficult task.
We show, that when the representation is isometric such computations are possible and
we can use duality effectively.

We focus on link graphs constructed using generating sets of a group, as in [39]. For a
finite, symmetric generating set S not containing the identity element the vertices of the
link graph L(S) are the elements of S; generators s and t are connected by an edge if
s−1t is a generator. We will also assume that the graph is equipped with a weight ω on the
edges.

Let X be a Banach space and denote by κp(S,X) be the optimal constant in the p-
Poincaré inequality for the link graph L(S) of G and the norm of X ,∑

s∈S

‖f(s)− Af‖pX degω(s) ≤ κpp
∑
s∼t

‖f(s)− f(t)‖pXω(s, t),

where Af is the mean value of f . When X = L2, the constant κ2(S, L2) = κ2(S,R) can
be expressed in terms of of the first eigenvalue of the discrete Laplacian.

Our main result shows that sufficiently small constants in Poincaré inequalities for the
graph L(S) imply the required cohomological vanishing. Given a number 1 < p <∞ we
denote by p∗ its adjoint index, satisfying 1

p
+ 1

p∗
= 1.

Theorem 1.1. Let X be a reflexive Banach space and let G be a group generated by
a finite, symmetric set S, not containing the identity element. If the link graph L(S) is
connected and for some 1 < p <∞ the associated Poincaré constants satisfy

max
{

2−
1
pκp(S,X), 2−

1
p∗ κp∗(S,X

∗)
}
< 1,

then
H1(G, π) = 0,

for every isometric representation π of G on X .

Clearly, by reflexivity, the same conclusion holds for actions on X∗. Interestingly, the
roles of the the two constants in the proof of the above theorem are not symmetric.
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We apply Theorem 1.1 to Lp spaces. The interesting case is p > 2. Indeed, when
1 < p ≤ 2, affine isometric actions exhibit the same behavior as for the Hilbert space: G
has property (T) if and only if any affine action on an Lp space for 1 < p ≤ 2 has a fixed
point [2]. Also, G admits a metrically proper affine isometric action on the Hilbert space
(i.e., is a-T-menable) if and only if it admits such an action on any Lp[0, 1] for 1 < p ≤ 2
[28] (see corrected version [29]). This last property is a strong negation of the existence
of a fixed point.

Fixed point properties for groups acting on Lp spaces for p > 2 are difficult to prove
and only a handful of results are known:

1. higher rank algebraic groups and their lattices have fixed points for every affine
isometric action on Lp-spaces for all p > 1 [2];

2. in [23] it was proved that SLn(Z[x1, . . . , xk]) has fixed points for every affine iso-
metric on Lp for every p > 1 and n ≥ 4;

3. Naor and Silberman [24] showed that Gromov’s random groups, containing (in a
certain weak sense) expanders in their Cayley graphs, have a fixed point for affine
isometric actions on any Lp for p > 1;

4. a general argument due to Fisher and Margulis (see the proof in [2]) shows, that
for every property (T) group G there exists a constant ε = ε(G) > 0 such that any
affine isometric action on Lp for p ∈ [2, 2 + ε), has a fixed point. However, their
argument does not give any control over ε.

On the other hand there are also groups which have property (T) but act without fixed
points on Lp spaces. One example is furnished by Sp(n, 1), which has property (T) but has
non-vanishing Lp-cohomology for p > 4n + 2, by a result of Pansu [32]. It also known
that there exist hyperbolic groups which have property (T). Nevertheless, Bourdon and
Pajot [5] showed that for every hyperbolic group G and sufficiently large p > 2 there is
an affine isometric action on `p(G), whose linear part is the regular representation and
which does not have a fixed point. Moreover, Yu [37] showed that every hyperbolic group
admits a proper, affine isometric action on `p(G×G) for all sufficiently large p > 2 (see
also [27] for another construction). We refer to [30] for a recent survey.

The techniques we use to establish the fixed point properties are different from the
ones used previously for general Banach spaces. In particular, we do not need the Howe-
Moore property to prove our results. This representation theoretic property was necessary
in [2, 23]. The expected outcome is also slightly different, as our methods are not expected
to give fixed points on Lp for all p > 1. One reason is that the p-Poincaré constants
usually increase above 21/p as p grows to infinity. The second reason is that the main result
applies to random hyperbolic groups, which, as remarked earlier, act without fixed points
on Lp-spaces for p > 2 sufficiently large. Using our approach we obtain the appropriate
vanishing of cohomology H1(G, π) for isometric representations π on Lp-spaces with
p ∈ [2, 2 + c), where the value of c depends on the group and can be estimated explicitly.
Finally, we point out that our techniques and the Poincaré inequalities we use, are all
linear, in contrast to the non-linear approach used e.g., in [17, 35]. Linearity allows to
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use interpolation methods effectively and also to obtain additional information about the
structure of cohomology in the presence of spectral gaps.

To apply Theorem 1.1 we need to estimate p-Poincaré constants for p > 2. Even in
classical settings, such as convex domains in Rn, estimates exist but exact values of p-
Poincaré constants are not known, except a few special cases. The situation is even worse
for finite graphs, where very few estimates are known for cases other than p = 1, 2. Here
we consider the family of Ã2-groups, indexed by powers of primes. These groups were
introduced and studied in [6, 7]. For every q, the group Gq has a generating sets whose
link graph is the incidence graph of the finite projective plane over the field Fq. Spectra of
such graphs were computed in [11] and give, in particular, the exact value of the Poincaré
constant κ2(S,R). We use this fact to estimate κp(S, Lp) for these graphs, which allows
to obtain for each q a number cq such that any affine isometric action of G on any Lp has
a fixed point for p ∈ [2, 2 + cq). The explicit estimates of cq are given in Theorem 5.1.

As mentioned earlier, our results apply to random hyperbolic groups, more precisely,
to random groups in the Gromov density model with densities 1/3 < d < 1/2, and yield
important consequences. These groups are hyperbolic and have Kazhdan’s property (T)
with overwhelming probability [39, 20]. Using our methods we give lower bounds on
p for which fixed points exists for all isometric actions on any Lp-space. A connection
with the conformal dimension arises through the work of Bourdon and Pajot [5] and
allows us to give a lower bound on the conformal dimension of a boundary of a random
hyperbolic group, using an associated link graph, see Section 6. The problem of estimating
the conformal dimension of random hyperbolic groups was posed by Gromov [16, 9.B (g)]
and Pansu [31, IV.b].

Our methods also apply to affine actions, whose linear part is a uniformly bounded
representation on a Hilbert space. More precisely, we show that H1(G, π) = 0, whenever
π is a uniformly bounded representation with norms of all operators bounded by a con-
stant, which depends on the group but is close to

√
2 in many cases, see Theorems 5.5 and

6.3. The question of extending property (T) in the form of cohomological vanishing from
unitary to uniformly bounded representation is a well-known open question. In particu-
lar, Shalom conjectures that for every hyperbolic group there exists a uniformly bounded
representation with a proper cocycle. The case of Sp(n, 1) is an unpublished result of
Shalom.

Finally, we present other applications. We improve the differentiability class of diffeo-
morphic actions on the circle in the rigidity theorem in [25, 26] and estimate eigenvalues
of the discrete p-Laplacian on finite quotients of groups using Kazhdan-type constants.
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5 Ã2 groups 16

6 Hyperbolic groups 18

7 Other Applications 20
7.1 Actions on the circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.2 The finite–dimensional case and the p-Laplacian . . . . . . . . . . . . . . 21

2 Actions on Banach spaces

2.1 Generating sets and link graphs
Let G denote a discrete group generated by a finite symmetric set S = S−1. Let L(S)
denote the following graph, called the link graph of S. The vertices are given by V = S.
Two vertices s, t ∈ S are connected by an edge, denoted s ∼ t, if and only if s−1t ∈ S
and t−1s ∈ S.

The set E is defined as follows:

E =
{

(s, t) ∈ S × S : s−1t ∈ S
}
.

Note that E can be viewed as the set of oriented edges and in E every edge is counted
twice.

A weight on L(S) is a function ω : E → (0,∞), such that ω(s, t) = ω(t, s), for every
s, t ∈ S. Given a weight on the link graph, the associated degree of a vertex r ∈ S is
defined to be

degω(s) =
∑
t, t∼s

ω(t, s).

A weight ω on a link graph L(S) is admissible if it satisfies

1. degω(s) = degω(s−1), and
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2. degω(r) =
∑

(s,t): s−1t=r ω(s, t),

for every r, s, t ∈ S. Note that ∑
s∈S

degω(s) = ω(E).

Throughout the article we consider only admissible weights on link graphs of generating
sets.

2.2 Isometric representations and associated Banach spaces
Let X be a Banach space equipped with a norm ‖ · ‖X . We assume throughout that X
is reflexive and that π : G → B(X) is a representation of G into the bounded invertible
operators on X . Let X∗ denote the continuous dual of X , with its standard norm. X∗ is
naturally equipped with the adjoint representation of G, π : G→ B(X∗),

πg = π∗g−1 .

Throughout we fix 1 < p < ∞. The value of p will be chosen later depending on the
context. We denote by p∗ the adjoint index, satisfying 1

p
+ 1

p∗
= 1, and by Lp the space

Lp(µ) for any measure µ (our results apply with no assumptions on the measure). We also
use ' to denote an isomorphism and ∼= to denote an isometric isomorphism of Banach
spaces.

Define the Banach space C(0,p)(G, π) to be the linear space X , with the norm

‖v‖(0,p) = ω(E)
1
p‖v‖X .

Let 〈· , ·〉X denote the natural pairing betweenX andX∗. The pairing betweenC(0,p)(G, π)
and C(0,p∗)(G, π) is given by

〈v, w〉0 = ω(E) 〈v, w〉X .

Then C(0,p∗)(G, π) is the dual space of C(0,p)(G, π).
We define C(1,p)(G, π) to be the finite direct sum

⊕
s∈S X , with the norm given by

‖f‖(1,p) =

(∑
s∈S

‖f(s)‖pX degω(s)

) 1
p

.

The dual of C(1,p)(G, π) is C(1,p∗)(G, π), via the pairing

〈f, φ〉1 =
∑
s∈S

〈f(s), φ(s)〉X degω(s),

for f ∈ C(1,p)(G, π) and φ ∈ C(1,p)(G, π)∗.
Define an operator Qπ on C(1,p)(G, π),

Qπf(s) = πsf(s−1).

A similar operator Qπ is defined on C(1,p∗)(G, π). The following is straightforward to
verify.
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Lemma 2.1. The operator Qπ is an involution, satisfying Q∗π = Qπ.

Consider the following subspaces of C(1,p)(G, π), defined as eigenspaces of Qπ:

C
(1,p)
+ (G, π) =

{
f ∈ C(1,p)(G, π) : f = Qπf

}
,

and
C

(1,p)
− (G, π) =

{
f ∈ C(1,p)(G, π) : f = −Qπf

}
.

Lemma 2.2. For any 1 < p <∞ we have C(1,p)(G, π) = C
(1,p)
+ (G, π)⊕ C(1,p)

− (G, π).

Proof. We define two bounded operators: P+
π : C(1,p)(G, π)→ C

(1,p)
+ (G, π),

P+
π =

I +Qπ

2
,

and P−π : C(1,p)(G, π)→ C
(1,p)
− (G, π),

P−π =
I −Qπ

2
.

Clearly P+
π + P−π = I . Additionally, C(1,p)

+ (G, π) = kerP−π = imP+
π and C(1,p)

− (G, π) =
kerP+

π = imP−π . Indeed, we have

πs−1(P+
π f(s)) =

πs−1f(s) + f(s−1)

2
= P+

π f(s−1).

Finally, P+
π restricted to C(1,p)

+ (G, π) and P−π restricted to C(1,p)
− (G, π) are identity opera-

tors, so that P+
π and P−π are projections onto the required subspaces.

We now analyze the structure of C(1,p)(G, π) in relation to the one of C(1,p∗)(G, π).

2.3 Duality for C(1,p)
− (G, π)

The dual of C(1,p)(G, π) is C(1,p∗)(G, π). Let P+
π : C(1,p∗)(G, π) → C

(1,p∗)
+ (G, π) and

P−π : C(1,p∗)(G, π)→ C
(1,p∗)
− (G, π) denote similar projections as above on the dual level.

Lemma 2.3. We have P+
π = (P+

π )∗ and P−π = (P−π )∗.

Proof. Let f ∈ C(1,p)(G, π) and φ ∈ C(1,p∗)(G, π). Then

(P−π )∗ =
1

2
(I −Qπ)∗ =

1

2
(I −Qπ) = P−π .

Similarly for P+
π .

Lemma 2.4. We have the following isomorphisms: C(1,p)
− (G, π)∗ ' C

(1,p∗)
− (G, π) and

C
(1,p)
+ (G, π)∗ ' C

(1,p∗)
+ (G, π).
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Proof. Consider f ∈ C(1,p)
− (G, π) and let φ ∈ C(1,p∗)(G, π). Then

〈f, φ〉1 = 〈−Qπf, φ〉1 = 〈f,−Qπφ〉1.

Therefore,
2〈f, P+

π φ〉1 = 0,

which shows that C(1,p∗)
+ (G, π) annihilates C(1,p)

− (G, π).
Conversely, if φ ∈ C(1,p∗)(G, π) annihilates C(1,p)

− (G, π), then

〈P−π f, φ〉1 = 〈f, P−π φ〉 = 0

for every f ∈ C(1,p)(G, π). Consequently, P−π φ = 0 and φ = P+
π φ, which means it

belongs to C(1,p∗)
+ (G, π). Thus,

C
(1,p)
− (G, π)∗ ∼= C(1,p)(G, π)

/
C

(1,p∗)
+ (G, π) ' C

(1,p∗)
− (G, π).

Other cases are proved similarly.

However, in order to identify the dual of C(1,p)
− (G, π) an isomorphism is not suffi-

cient, we need an isometric isomorphism instead. For a representation π, C(1,p)
− (G, π)∗ is

in general not isometrically isomorphic to C(1,p∗)
− (G, π). However, it turns out that this

additional property holds when the representation π is isometric.

Theorem 2.5. Assume that πs is an isometry for every s ∈ S. Then we have the following
isometric isomorphisms:C(1,p)

− (G, π)∗ ∼= C
(1,p∗)
− (G, π) andC(1,p)

+ (G, π)∗ ∼= C
(1,p∗)
+ (G, π).

Proof. ConsiderC(1,p∗)(G, π)
/
C

(1,p∗)
+ (G, π), which consists of cosets [φ] = C

(1,p∗)
+ (G, π)+

φ, for φ ∈ C(1,p∗)(G, π). We need to show that for each such cosetN , inf {‖φ‖ : N = [φ]}
is attained when φ ∈ C(1,p∗)

− (G, π).
For φ ∈ C(1,p∗)

− (G, π) and ψ ∈ C(1,p∗)
+ (G, π), we have

‖φ+ ψ‖(1,p∗) = ‖ −Qπφ+Qπψ‖(1,p∗) = ‖φ− ψ‖(1,p∗),

since the involution Qπ is an isometry, whenever π, or equivalently π, is an isometric
representation. Now consider the coset [φ] for φ ∈ C

(1,p∗)
− (G, π) and consider another

element, ζ ∈ C(1,p∗)(G, π), such that ζ − φ ∈ C(1,p∗)
+ (G, π), so that ζ = φ + ψ, for some

ψ ∈ C(1,p∗)
+ (G, π). This implies

‖φ‖(1,p∗) ≤
‖φ− ψ‖(1,p∗) + ‖φ+ ψ‖(1,p∗)

2
= ‖ζ‖(1,p∗),

which proves the claim.

This last statement allows us to identify C(1,p)
− (G, π)∗ with C(1,p∗)

− (G, π) for isometric
representations and is crucial in the proof of the main theorem.
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2.4 The operator δ

We define the operator δπ : C(0,p)(G, π)→ C
(1,p)
− (G, π) by the formula

δπv(s) = v − πsv.

Theorem 2.5 allows to express the adjoint of δπ in a way, which is convenient for calcula-
tions. We have the following explicit formula for δ∗π.

Lemma 2.6. The operator δ∗π : C
(1,p∗)
− (G, π)→ C(0,p∗)(G, π) is given by

δ∗πφ = 2
∑
s∈S

φ(s)
degω(s)

ω(E)
. (2.1)

Proof.

〈δπv, φ〉1 =
∑
s∈S

〈v − πsv, φ(s)〉X degω(s)

=
∑
s∈S

(〈v, φ(s)〉X − 〈v, πs−1φ(s)〉X) degω(s)

=
∑
s∈S

(
〈v, φ(s), 〉X + 〈v, φ(s−1)〉X

)
degω(s)

=

〈
v, 2

∑
s∈S

φ(s)
degω(s)

ω(E)

〉
0

.

It is now clear that δ∗π admits a continuous extension to the space C(1,p∗)(G, π), defined
by the right hand side of the formula (2.1).

2.5 The operators D, L, and d
We define the Banach space,

C(2,p)(G, π) =

η ∈ ⊕
(s,t)∈E

X : η(s, t) = −η(t, s)

 ,

equipped with the norm

‖η‖(2,p) =

 ∑
(s,t)∈E

‖η(s, t)‖pXω(s, t)

 1
p

.

We also define operators D,Lπ : C
(1,p)
− (G, π)→ C(2,p)(G, π) by the formulas

Df(s, t) = f(t)− f(s),
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Lπf(s, t) = πsf(s−1t).

Then the operator dπ is defined by

dπ = Lπ −D.

Similarly, define D, Lπ and dπ for the adjoint representation.

Lemma 2.7. Let π be an isometric representation. The operator Lπ is an isometry onto
its image. Consequently, D is an isometry as well when restricted to ker dπ. (The same
claim holds for Lπ and D, restricted to ker dπ).

Proof. By direct calculation,

‖Lπf‖p(2,p) =
∑

(s,t)∈E

‖πsf(s−1t)‖pXω(s, t)

=
∑
s∈S

‖f(s)‖pX degω(s)

= ‖f‖p(1,p).

The kernel of the operator D consists of the constant functions on S, which is a com-
plemented subspace of C(1,p)(G, π). The projection onto this subspace is given by

Mφ(s) =
∑
s∈S

φ(s)
degω(s)

ω(E)
.

Note that for φ ∈ C(1,p∗)
− (G, π) we have

Mφ(s) =
1

2
δ∗πφ,

for every s ∈ S.

Lemma 2.8. Let φ ∈ C(1,p∗)
− (G, π). Then ‖Mφ‖(1,p∗) =

1

2
‖δ∗πφ‖(0,p∗).

Proof. We have the following equalities:

‖Mφ‖p
∗

(1,p∗) =
∑
s∈S

∥∥∥∥δ∗πφ2
∥∥∥∥p∗
X

degω(s)

=
1

2p∗
‖δ∗πφ‖

p∗

X

(∑
s∈S

degω(s)

)

=
1

2p∗
‖δ∗πφ‖

p∗

0 .
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2.6 Sufficient conditions for vanishing of cohomology
Given a group G, the 1-cocycles associated to π are functions b : G → X satisfying the
cocycle condition,

bg = πgbh + bg,

for every g, h ∈ G. The coboundaries are those cocycles which are of the form

bg = v − πgv

for some v ∈ X and all g ∈ G. The first cohomology ofGwith coefficients in π is defined
to be H1(G, π) = cocycles

/
coboundaries.

An affine action of G on X is defined as

Agv = πgv + bg,

where π is called the linear part of the action and b is a cocycle. Vanishing of cohomology
H1(G, π) is equivalent to the existence of a fixed point for any affine action with linear
part π. We refer to [4] for background on cohomology and affine actions.

The reader can easily verify the following lemma.

Lemma 2.9. image(δπ) ⊆ ker dπ.

This fact allows to formulate the following sufficient condition for the fixed point
property for affine actions on X .

Proposition 2.10. If the image of δπ is equal to ker dπ, then H1(G, π) = 0.

Proof. Let b : G → X be a 1-cocycle for π and let b′ denote the restriction of b to the
generating set S. The cocycle condition implies that b′ ∈ C(1,p)

− (G, π) and, furthermore,
that b′ ∈ ker dπ. If δπ is onto ker dπ, then b′ = δπv for some v ∈ X . Since b is trivial on
the generators, we conclude that b is trivial.

It is important to remark that the technical details here are slightly different than in
[39], where the original condition in terms of almost invariant vectors is deduced, and one
needs to use the Delorme-Guichardet theorem to obtain cohomological vanishing. The
above argument allows to bypass the use of the Delorme-Guichardet theorem and obtain
vanishing of cohomology directly.

Note that the image of δπ is always properly contained in C(1,p)
− (G, π). By the open

mapping theorem we also have the following

Corollary 2.11. Assume π does not have invariant vectors. If δ is onto ker d then there is
a constant K > 0 such that

sup
s∈S
‖v − πsv‖X ≥ K‖v‖X ,

for every v ∈ X .

The constantK in the above statement can be viewed as a version of Kazhdan constant
for isometric representations of G on X .
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3 Poincaré inequalities associated to norms
Consider a weighted, finite graph Γ = (V , E), a number p ≥ 1 and a Banach space X .
The p-Poincaré inequality for Γ and the norm of X is the inequality(∑

x∈V

‖f(x)− Af‖pX degω(x)

) 1
p

≤ κp

(∑
x∼y

‖f(x)− f(y)‖pXω(x, y)

) 1
p

, (3.1)

for all functions f : V → X , where Af = 1
2ω(E)

∑
x∈V f(x) degω(x). On a finite graph,

the inequality (3.1) is always satisfied for some κp > 0.

Definition 3.1. Let L(S) be a link graph of a generating set S, with weight ω. For a
Banach space X and a number 1 < p < ∞ we define the constant κp(S,X) of L(S) by
setting

κp(S,X) = inf κp,

where the infimum is taken over all κp, for which inequality (3.1) holds.

We will omit the reference to ω in the notation for κ.

3.0.1 Hilbert spaces

When X = L2 is the Hilbert space this constant is related to the smallest positive eigen-
value λ1 of the Laplacian on the graph as follows:

κ2(S, L2) =

√
λ−1

1 ,

since the latter can be defined via the variational expression and the Rayleigh quotient.

3.0.2 Lp-spaces, 1 ≤ p <∞

Let (Y, µ) be any measure space and for X = R consider a p-Poincaré inequality∑
x∈V

|f(x)− Af |p degω(s) ≤ κpp
∑
x∼y

|f(x)− f(y)|pω(x, y) (3.2)

on a finite graph. By integrating over Y with respect to µ we obtain∑
x∈V

‖f(x)− Af‖pLp
degω(x) ≤ κpp

∑
x∼y

‖f(x)− f(y)‖pLp
ω(x, y),

for any f : V → Lp. This gives

‖f − Af‖(1,p) ≤ κp‖∇f‖(2,p),

so that κp(S, Lp) is equal to κp(S,R) in the inequality (3.2).
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3.0.3 Direct sums

More generally, consider an `p-direct sum X =
(⊕

s∈S Xi

)
p

of Banach spaces {Xi}i∈I .
A similar argument as above shows that κp(S,X) ≤ supi∈I κp(S,Xi).

3.0.4 The case p =∞

Consider s, s−1 ∈ S and choose x ∈ X such that ‖x‖X = 1. Let dS denote the path metric
on L(S). Define f : Γ→ R by the formula

f(t) =



(
1− 2

dS(s, t)

dS(s, s−1)

)
x if dS(s, t) ≤ dS(s, s−1)

2
,(

−1 + 2
dS(s, t)

dS(s, s−1)

)
x if dS(s−1, t) ≤ dS(s, s−1)

2
,

0 if dS(s, t) >
dS(s, s−1)

2
and dS(s−1, t) >

dS(s, s−1)

2
.

For such f we have ‖f‖(X,∞) = 1 and Af = 0, however ‖Df‖(X,∞) =
1

dS(s, s−1)
. Thus

we have
κ∞(G, π) ≥ max

s∈S
dS(s, s−1)

and for sufficiently large S, the above Poincaré constant is at least 1. Additionally, for any
ε > 0 there exists a sufficiently large p < ∞, such that the norms ‖f‖(1,p) and ‖f‖(1,∞)

are ε-close. For a sufficiently small ε > 0 and the corresponding p as above, we also have
2−

1
pκp(S,X) ≥ 1.

3.0.5 Behavior under isomorphisms

Let T : X → Y be an isomorphism of Banach spaces X , Y , satisfying ‖x‖X ≤ ‖Tx‖y ≤
L‖x‖X for every x ∈ X . Then κp(G, π) ≤ Lκp(G, Y ).

4 Vanishing of cohomology

4.1 An inequality for κp and δ∗π
Note that since inE each edge ofL(S) is counted twice, we have ‖Df‖(2,p) = 2

1
p‖∇f‖`p(S,X)

and Mf = Af . The following result describes the relation between Poincaré constants
and the operator δ∗π.

Theorem 4.1. The inequality

2
(

1− 2−
1
p∗ κp∗(S,X)

)
‖φ‖(1,p∗) ≤ ‖δ∗πφ‖(0,p∗), (4.1)

holds for every φ ∈ ker dπ.
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Proof. Let φ : S → X∗. Then

κp∗(S,X
∗) ‖Dφ‖(2,p∗) = κp∗(S,X

∗) 2
1
p∗ ‖∇φ‖`p∗ (E,X)

≥ 2
1
p∗
∥∥φ−Mφ

∥∥
(1,p∗)

≥ 2
1
p∗
(
‖φ‖(1,p∗) −

∥∥Mφ
∥∥

(1,p∗)

)

Since D is an isometry on ker dπ,

2
1
p∗ ‖φ‖(1,p∗) − κp∗(S,X∗)‖φ‖(1,p∗) ≤ 2

1
p∗ ‖Mφ‖(1,p∗),

which, by lemma 2.8, becomes(
1− 2−

1
p∗ κp∗(S,X

∗)
)
‖φ‖(1,p∗) ≤

1

2
‖δ∗πφ‖(0,p∗).

Remark 4.2. The above inequality does not reduce to the one in [39] in the case X = L2

and p = 2, even though in both cases the constant is non-zero if κ2(S,R) <
√

2. For
X = L2 and p = 2, Theorem 4.1 gives a strictly smaller lower estimate for the norm of
the operator δ∗π. Indeed, in that case the estimate obtained using spectral methods is√

2 (2− κ2(S, L2)2) ‖φ‖(1,2) ≤ ‖δ∗πφ‖(2,2).

This difference is a consequence of the fact that in the case p = 2 and X = L2 we can
apply the Pythagorean theorem instead of the triangle inequality in the first sequence of
inequalities.

A similar inequality as in Theorem 4.1 holds for κp(S,X) and the norm of δ∗π. The
above inequality can be now used to show that sufficiently small constants in Poincaré
inequalities on the link graph imply fixed point properties.

4.2 Proof of the main theorem
Theorem 1.1. Let X be a reflexive Banach space and let G be a group generated by
a finite, symmetric set S, not containing the identity element. If the link graph L(S) is
connected and for some 1 < p <∞ the associated Poincaré constants satisfy

max
{

2−
1
pκp(S,X), 2−

1
p∗ κp∗(S,X

∗)
}
< 1,

then
H1(G, π) = 0,

for every isometric representation π of G on X .
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Proof. We have the following dual diagrams:

ker dπ

C
(1,p∗)
− (G, π)

i

?

∩

dπ -

D
- C(2,p∗)(G, π)

C(0,p∗)(G, π) �
δ∗π

δπ

-
δ∗πi
∗

�

(ker dπ)∗

i∗

??

C(0,p)(G, π)
δπ

- ker dπ

C
(1,p)
− (G, π)

i

?

∩

dπ -

D
- C(2,p)(G, π)

(ker dπ)∗

i
∗

??

δ∗π

�

For the purposes of this proof we will view, abusing the notation, δπ as an operator
C(0,p)(G, π) → ker dπ. The natural injection of ker dπ into C(1,p)

− (G, π) will be denoted
by i. Consequently, the formula (2.1) expresses the composition δ∗π ◦ i∗ in this notation, as
on the diagram. Similar notation is used on the dual level, with i denoting the inclusion of
ker dπ into C(1,p∗)(G, π).

By Theorem 4.1, if 2−
1
pκp(S,X) < 1 we conclude that δ∗π ◦ i

∗ is injective with closed
image when restricted to ker dπ. In fact, this means that the composition δ∗π ◦ i

∗ ◦ i is
injective with closed image. In particular, i ∗ ◦ i is injective with closed image, and thus
its dual, i∗ ◦ i : ker dπ → (ker dπ)∗, is surjective.

A similar argument applied to 2−
1
p∗ κp∗(S,X

∗) < 1 yields δ∗π ◦ i∗ ◦ i is also injective
with closed image, which implies that δ∗π is injective with closed image on the image of
i∗ ◦ i. Since the latter is surjective, δ∗π is injective with closed image on (ker dπ)∗. This on
the other hand implies that δπ is onto, which proves the theorem by Proposition 2.10.

Remark 4.3. Note that under the assumptions of Theorem 1.1, (ker dπ)∗ and ker dπ are
isomorphic (a similar fact holds for ker dπ and (ker dπ)∗). These spaces are closely related
to the spaces of cocycles for the given representations.

It is an interesting question, for which isometric representations is i∗ ◦ i automatically
an isomorphism, or at least is surjective. This property would eliminate, for such repre-
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sentations, the need to use the inequality 2−
1
pκp < 1, which is necessary in the above

proof. A special case is discussed and applied in Section 7.2.

Remark 4.4. Note that it is not clear whether the above method can be extended to sub-
spaces of Y ⊆ X . This would require estimating κp(S,X) for some p, together with
κp∗(S,X

∗), where Y ∗ is a quotient of X∗.

5 Ã2 groups
In this section we apply Theorem 1.1 to specific groups and Banach spaces. In [7] the au-
thors studied a family of groups {Gq} called the Ã2-groups. These groups were introduced
in [6], see also [4] for a detailed discussion. The group Gq has a presentation, whose asso-
ciated link graph L(S) is the incidence graph of a finite projective plane P2(Fq) (here, q is
a power of a prime number). Spectra of such graphs, with weight ω ≡ 1, were computed
by Feit and Higman [11], see also [4, 39]. It follows that

κ2(S,R) =

(
1−

√
q

q + 1

)− 1
2

.

In general, any estimates of p-Poincaré constants are difficult to obtain. In our case, the
link graphs are finite graphs and we can use norm inequalities and a version of 3.0.5 to
give the necessary estimates.

Theorem 5.1. For each q = kn for some n ∈ N and prime number k we have

H1(Gq, π) = 0

for all

2 ≤ p <
ln(q2 + q + 1) + ln(q + 1)

1

2
ln(2(q2 + q + 1)(q + 1))− ln(2)− ln

(√
1−

√
q

q + 1

)
and for any isometric representation π of Gq on Lp(Y, µ) fon any measure space.

Proof. We proceed by estimating κp(S, Lp) and applying Theorem 1.1. Recall that given
the space `p(Ω) for 2 ≤ p, where the set Ω is finite, the following norm inequalities hold,

‖f‖`p(Ω) ≤ ‖f‖`2(Ω) ≤ (#Ω)
1
2
− 1

p‖f‖`p(Ω),

where ‖f‖`p(Ω) =
(∑

x∈Ω |f(x)|p
) 1

p . Since the degree of the incidence graphs of finite
projective planes is constant and equal to q + 1 we obtain for f : S → R satisfying
Mf = 0,

‖f‖(1,p) = (q + 1)
1
p‖f‖`p(S,X)

≤ (q + 1)
1
p
− 1

2‖f‖(1,2)

≤ (q + 1)
1
p
− 1

2κ2(S, L2)‖∇f‖`2(E,X)

≤ (q + 1)
1
p
− 1

2κ2(S, L2)

(
ω(E)

2

) 1
2
− 1

p

‖∇f‖`p(E,X).
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For each q we have ω(E) = 2(q2 + q + 1)(q + 1), which gives the inequality

2−
1
pκ2(S, Lp) ≤ 2−

1
p (q + 1)

1
p
− 1

2κ2(S, L2)

(
ω(E)

2

) 1
2
− 1

p

= 2−
1
p

(√
1−

√
q

q + 1

)−1 (
q2 + q + 1

) 1
2
− 1

p .

Bounding the above quantity by 1 from above gives

p <
2 ln(2(q2 + q + 1))

ln(2(q2 + q + 1))− ln

(
2

(
1−

√
q

q + 1

)) .
A similar norm estimate for p∗ ≤ 2, by virtue of the inequality

‖f‖`2(Ω) ≤ ‖f‖`p∗ (Ω) ≤ (#Ω)
1
p
− 1

2‖f‖`2(Ω),

yields

p∗ >
2 ln((q + 1)(q2 + q + 1))

ln (2(q2 + q + 1)(q + 1)) + ln
(

2
(

1−
√
q

q+1

))
Simplifying and comparing p and

p∗

p∗ − 1
we obtain the claim.

Remark 5.2. The same argument gives a similar conclusion for the Banach space X =
(
⊕

Xi)p, the `p-sum in which Xi is finite-dimensional with a norm sufficiently, and uni-
formly in i, close to the Euclidean norm. We leave the details to the reader.

Remark 5.3. The largest value of p in Theorem 5.1 is approximately 2.106 attained for
q = 13. As q increases to infinity the values of p, for which cohomology vanishes, con-
verge to 2 from above.

Remark 5.4. Although our estimate of the constant in the p-Poincaré inequality is not ex-
pected to be optimal, other interpolation methods do not seem to yield significantly better
constants. For instance, Matousek’s interpolation method for p-Poincaré inequalities [22]
gives a constant strictly greater than 21/p for any p ≥ 2, since it emphasizes independence
of dimension and is much better suited to deal with sequences of graphs (e.g. expanders).

Recall that the Banach-Mazur distance dBM(x, y) between two Banach spaces is the
infimum of the set of numbers L, for which there exists an isomorphism T : X → Y
satifying ‖x‖X ≤ ‖Tx‖Y ≤ L‖x‖X . Another consequence of Theorem 1.1 is that we
obtain vanishing of cohomology for representations on Banach spaces, whose Banach-
Mazur distance from the Hilbert space is controlled. We phrase this property in terms of
uniformly bounded representations.
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Theorem 5.5. Let Gq be an Ã2-group and π be a uniformly bounded representation of
Gq on a Hilbert space H , satsfying

sup
g∈G
‖πg‖ <

√
2

(
1−

√
q

q + 1

)
.

Then H1(G, π) = 0.

Proof. Let ‖v‖′ = supg∈G ‖πgv‖. Then ‖ · ‖′ is a norm and π is an isometric rep-
resentation on X = (H, ‖ · ‖′). The identity is an isomorphism I : X → H with

L =

√
2

(
1−

√
q

q + 1

)
, and LI : X∗ → H is an isomorphism with the same prop-

erty. The estimate now follows by letting p = 2 and using the relation between κ2(S,X),
κ2(S,X∗) and κ2(S,H), described in 3.0.5.

A similar fact (with appropriate constants) holds for Lp spaces, for the range of p as in
the previous theorem.

6 Hyperbolic groups
In this section we discuss the consequences of 1.1 in the case of random hyperbolic
groups. In [39] Żuk used spectral methods to show that many random groups have prop-
erty (T) with overwhelming probability. A detailed account was recently provided in [20].
We sketch the strategy of the proof and generalize it to Lp-spaces.

In [13] it was shown that for a certain random graphs on n vertices of degree deg there
exists a constant such that for any ε > 1 we have

lim
n→∞

P

(
κ2(S,R) ≤

(
1−

(√
2 deg(deg−1)

1
4

deg
+

ε

deg

)))
→ 1. (6.1)

In [39] a modified link graph, denoted L′(S), with multiple edges was considered. L′(S)
decomposes into random graphs as above and it is shown, using the above estimate, that
it has a spectral gap strictly large than 1/2 with probability 1. In our setting, the modified
link graph L′(S) can be viewed as a link graph with an admissible weight ω(s, t), which
is defined to be the number of edges connecting s and t. Thus we can apply Theorem
1.1. Recall that in the Gromov model G(n, l, d) for random groups one chooses a density
0 < d < 1 and considers a group given by a generating set S of cardinality n and (2n−1)ld

relations of length l, chosen at random, letting l increase to infinity.

Theorem 6.1 ([39]; see also [20] for a detailed proof). Let G be a random group in the
density model, where 1/3 < d < 1/2. Then, with probability 1, G is hyperbolic and there
exists a group Γ and a homomorphism φ : Γ→ G with the following properties:

1. Γ has a generating set S, whose link graph satisfies 2−1/2κ2(S, L2) < 1,

2. φ(Γ) is of finite index in G.
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Given the above, we apply similar norm inequalities as in the case of Ã2-groups to the
link graph of Γ and, as before, obtain fixed point properties for affine isometric actions
of the group Γ on Lp for certain p > 2. For any given p > 1, the property of having
vanishing cohomology H1(G, π) for all isometric representations π on Lp-spaces passes
to quotients and from finite index subgroups to the ambient group. We thus have

Theorem 6.2. With the assumptions of the previous theorem, with probability 1, Theo-
rem 1.1 applies to hyperbolic groups. More precisely, let G, Γ and φ be as above, and
let L(S) = (V , E) denote the link graph of Γ. Then H1(G, π) = 0 for every isometric
representation π of G on Lp for

p < min {p0, p0
∗} ,

where

p0 =
ln degω− ln(2#E)

1

2
ln

(
degω
#E

)
− lnκ2(S,R)

and p0 =
ln(#V degω)− ln 2

1

2
ln(#V degω)− lnκ2(S,R)

.

We also have an estimate the norms of uniformly bounded representations to which
cohomological vanishing can be extended for random hyperbolic groups.

Theorem 6.3. Let G be a hyperbolic group in the Gromov model as above with
1

3
< d <

1

2
and π be a uniformly bounded representation of G on a Hilbert space H , satisfying

sup
g∈G
‖πg‖ <

√
2

κ2(S,R)
,

Then H1(G, π) = 0.
In other words, the H1(G, π) vanishes with probability 1 for representations bounded

by
√

2.

We remark, that in (6.1), κ2(S,R) tends to 1 as deg → ∞. Thus the above upper
bound on the norm of the representation is

√
2 with probability 1. On the other hand,

Shalom showed that the Sp(n, 1) has non-trivial cohomology with respect to some uni-
formly bounded representations (unpublished). The same property for hyperbolic groups
is conjectured by Shalom and our Theorem 6.3 shows that one can extend property (T) to
class of representations.

We also note that M. Cowling proposed to define a numerical invariant of a hyperbolic
group by setting inf{supg∈G ‖πg‖ : H1(G, π) 6= 0}. Theorem 6.3 gives a uniform lower
bound of

√
2 on such an invariant, with probability 1, for hyperbolic groups in the Gromov

model.
Theorem 6.2 brings us to another interesting connection. Pansu [31] defined a quasi-

isometry invariant of a hyperbolic group, called the conformal dimension, to be the num-
ber

confdim(∂G) = inf {dimHaus(∂G, d) : d quasi-conformally equivalent to dv} ,
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where dimHaus denotes the Hausdorff dimension, ∂G denotes the Gromov boundary of
the hyperbolic group G and dv denotes any visual metric on ∂G. We refer to [18] for a
brief overview of conformal dimension of boundaries of hyperbolic groups. Bourdon and
Pajot [5] showed that a hyperbolic group acts by affine isometries without fixed points
on Lp(G) for p greater than the conformal dimension of ∂G. Combining this with van-
ishing of cohomology as studied here we see, that if H1(G, π) vanishes for all isometric
representations on Lp then

p ≤ confdim(∂G).

Gromov [16, 9.B (g)] and Pansu [31, IV.b] posed the question of estimating the conformal
dimension of random hyperbolic groups. Using Theorem 1.1 we obtain such estimates.

Corollary 6.4. With the assumptions and notation of Theorem 6.2,

confdim(∂G) ≥ min {p0, p0
∗} .

Finally, as mentioned in the introduction, the above facts show that the method of
Poincaré inequalities cannot in general give vanishing of cohomology as studied in this
paper, for all 2 < p <∞. In addition, we have the following quantitative statement about
Poincaré constants.

Corollary 6.5. For any hyperbolic group G and any generating set S not containing the
identity element, the Poincaré constants on the link graph associated to S satisfy

κp(S, Lp) ≥ 2
1
p or κp∗(S, Lp∗) ≥ 2

1
p∗ ,

for p > confdim(∂G).

7 Other Applications

7.1 Actions on the circle
Fixed point properties for the spaces Lp, p > 2, can be applied to studying actions on the
circle, by applying the vanishing of cohomology to the Lp-Liouville cocycle. In [26] the
following theorem was proved.

Theorem 7.1. Let G be a discrete group, such that H1(G, π) = 0 for every isometric

representation of G on Lp for some p > 2. Then for every α >
1

p
every homomorphism

h : G→ Diff1+α
+ (S1) has finite image.

Combining this result with, for instance, Theorem 5.1 we obtain

Corollary 7.2. Let q be a power of a prime number and Gq be be the corresponding Ã2

group. Then every homomorphism h : G→ Diff1+α
+ (S1) has finite image for

α >

1

2
ln(2(q2 + q + 1)(q + 1))− ln(2)− ln

(√
1−

√
q

q + 1

)
ln(q2 + q + 1) + ln(q + 1)

.
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7.2 The finite–dimensional case and the p-Laplacian
Let 1 < p < ∞. The p-Laplacian ∆p is an operator ∆p : `p(V ) → `p(V ), defined by the
formula

∆pf(x) =
∑
x∼y

(f(x)− f(y))[p]ω(x, y),

for f : V → R, where a[p] = |a|p−1 sign(a). The p-Laplacian reduces to the standard
discrete Laplacian for p = 2, and is non-linear when p 6= 2. The p-Laplacian is of great
importance in the study of partial differential equations. Its discrete version was studied
e.g. in [1, 34]

A real number λ is an eigenvalue of the p-Laplacian ∆p if there exists a function
f : V → R satisfying

∆pf = λf [p].

The eigenvalues of the p-Laplacian are difficult to compute in the case p 6= 2, due to
non-linearity of ∆p, see [15] for explicit estimates. Define

λ
(p)
1 (Γ) = inf

{∑
x∈V

∑
y∼x |f(x)− f(y)|pω(x, y)

infα∈R
∑

x∈V |f(x)− α|p degω(x)

}
, (7.1)

with the infimum taken over all f : V → R such that f is not constant. λ(p)
1 is the smallest

positive eigenvalue of the discrete p-Laplacian ∆p or the p-spectral gap.
We now apply an estimate similar to the one in Corollary 2.11, to finite quotients of

groups. Let G be a finitely generated group and consider a homomorphism h : G →
H , where H is a finite group. Let p > 1 and let ` 0

p (H) denote the subspace of `p(H)
consisting of those functions, which sum to 0.

We can identify the dual ` 0
p (H)∗ with the space ` 0

p∗(H), with the norm

‖f‖ = inf
α∈R
‖f − α‖p∗ .

We will use our results to estimate the p∗-spectral gap for this norm on the Cayley graph
of H .

Let X = ` 0
p (H)∗ be equipped with the adjoint of the left regular representation λ on

`p(H), restricted to X∗ = ` 0
p (H). We have

κp(S,X
∗) ≤ κp(S, `p(H)) = κp(S,R).

Computing the Poincaré constant of the link graph for the norm of X is not straightfor-
ward. However, following the strategy outlined in Remark 4.3, we will show that we can
bypass this condition. In order to do this we need to show that i∗ ◦ i is onto. In fact, a
stronger statement is true.

Lemma 7.3. Under the above assumptions, the map i∗ ◦ i : ker d → (ker d), is an iso-
morphism.

Proof. We can view X and X∗ as having the same underlying vector space (real-valued
functions f : H → X with mean value 0), equipped with two different norms. Similarly,
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C
(1,p∗)
− (G, π) and C(1,p)

− (G, π) also have the same underlying vector space, equipped with
two different norms. The adjoint λ of the left regular representation, coincides with λ. For
that reason ker dπ and ker dπ describe the same vector subspace. The claim follows from
the fact that all the spaces involved are finite-dimensional and complemented.

Now, since the representation of G on X does not have invariant vectors and δπ is
onto ker dπ, we can conclude, by the Open Mapping Theorem, that δπ in fact induces an
isomorphism between C(0,p∗)(G, π) and ker dπ. It follows from Theorem 4.1, that

2
(

1− 2−
1
pκp(S,R)

)
‖f‖(0,p∗) ≤ ‖δπf‖1,p∗ .

Since f ∈ ` 0
p (H), this gives(

2
(

1− 2−
1
pκp(S,R)

))p∗
‖f‖p

∗

X ≤
∑
s∈S

‖f − λsf‖p
∗

X

degω(s)

ω(E)
.

Since ‖v‖X ≤ ‖v‖`p(H), this yields(
2
(

1− 2−
1
pκp(S,R)

))p∗
inf
c∈R

∑
h∈H

|f(h)− c|p∗ degω(h)

≤
∑
h∈H

∑
g∼h

|f(h)− f(g)|p∗ degω(g−1h)

ω(E)
.

(Note that degω(g−1h) refer to L(S), not the Cayley graph of H .)

Corollary 7.4. Let G be a group generated by a finite, symmetric set S not containing
the identity element. If the link graph L(S) is connected and for some 1 < p < ∞ the
Poincaré constant satisfies

2−
1
pκp(S,R) < 1,

then
λ

(p)
1 ≥ 2

(
1− 2−

1
pκp(S,R)

)
on the Cayley graph of any finite quotient of G, for any weight ω(g, h) ≥ degω(g−1h)

ω(E)
.

Remark 7.5. A similar claim as in lemma 7.3 holds for any orthogonal representation
which is also isometric on `p(H).
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