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Abstract. We show that amenability of an action of a discrete group on a compact space X is equiv-
alent to vanishing of bounded cohomology for a class of Banach G-modules associated to the action,
that can be viewed as analogs of continuous bundles of dual modules over the G-space X. In the case
when the compact space is a point our result reduces to a classic theorem of B.E. Johnson, character-
ising amenability of groups. In the case when the compact space is the Stone-Čech compactification
of the group we obtain a cohomological characterisation of exactness, or equivalently, Yu’s property
A for the group, answering a question of Higson.

1. Introduction

An invariant mean on a countable discrete group G is a positive linear functional on `∞(G) which
is normalised by the requirement that it pairs with the constant function 1 to give 1, and which is
fixed by the natural action of G on the space `∞(G)∗. A group is said to be amenable if it admits an
invariant mean. The notion of an amenable action of a group on a topological space generalises the
concept of amenability and arises naturally in many areas of mathematics. For example, a group
acts amenably on a point if and only if it is amenable, while every hyperbolic group acts amenably
on its Gromov boundary.

In this paper we introduce the notion of an invariant mean for a topological action and prove that
the existence of such a mean characterises amenability of the action. Moreover, we use the exis-
tence of the mean to prove vanishing of bounded cohomology of G with coefficients in a suitable
class of Banach G modules, and conversely we prove that vanishing of these cohomology groups
characterises amenability of the action. This generalises the results of Johnson [9] on bounded
cohomology for amenable groups.

Another generalisation of amenability, this time for metric spaces, was given by Yu [14] with the
definition of property A. Higson and Roe [10] proved a remarkable result that unifies the two
approaches: A finitely generated discrete group G (regarded as a metric space) has Yu’s property
A if and only if the action of G on its Stone-Čech compactification βG is topologically amenable,
and this is true if and only if G acts amenably on some compact space. Guentner and Kaminker
[7] and Ozawa proved [13] that property A and exactness are equivalent for countable discrete
groups equipped with a proper left-invariant metric. To generalise the concept of invariant mean
to the context of a topological action, we introduce a Banach G-module W0(G, X) which is an
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analogue of `1(G), encoding both the group and the space on which it acts. Taking the dual and
double dual of this space we obtain analogues of `∞(G) and `∞(G)∗. A mean for the action is an
element µ ∈ W0(G, X)∗∗ satisfying the normalisation condition µ(π) = 1, where the element π is a
summation operator, corresponding to the pairing of `1(G) with the constant function 1 in `∞(G).
A mean µ is said to be invariant if µ(g · ϕ) = µ(ϕ) for every ϕ ∈ W0(G, X)∗, (Definition 2).

With these notions in place we give the a very natural characterisation of amenable actions in
terms of existence of invariant means and turn to the question of a cohomological characterisation
of amenable actions. Given an action of a countable discrete group G on a compact space X
by homeomorphisms we introduce a submodule N0(G, X) of W0(G, X) associated to the action
and which is analogous to the submodule `1

0(G) of `1(G) consisting of all functions of sum 0.
Indeed when X is a point these modules coincide. We also define a cohomology class [J], called
the Johnson class of the action, which lives in the first bounded cohomology group of G with
coefficients in a certain module, denoted N0(G, X)∗∗ (see Section 2 for definitions). Our main result
is the following.

Theorem 1. Let G be a countable discrete group acting by homeomorphisms on a compact Haus-
dorff topological space X. Then the following are equivalent

(1) The action of G on X is topologically amenable.

(2) There exists an invariant mean for the action.

(3) The class [J] ∈ H1
b(G,N0(G, X)∗∗) is trivial.

(4) Hp
b (G,E∗) = 0 for p ≥ 1 and every `1-geometric G-C(X) module E.

Subsequent to our result Monod produced a similar theorem which can be found in [12].

The definition of `1-geometric G-C(X) module is given in Section 2. Choosing the correct class of
modules as coefficients is one of the key new elements of the proof. The main idea is that the duals
of these modules have a structure that makes them similar to a continuous bundle of dual modules
over the space X. This structure is obtained by two new ingredients. The first one is an additional
structure of a module over C(X), similarly as in the classical Serre-Swan theorem characterizing
finite dimensional bundles. The second is a norm condition, defined using the representation of
C(X), which mimics the behavior of the norm in the space C(X, E) of continuous functions from X
to a normed space E.

When X is a point, our theorem reduces to Johnson’s celebrated characterisation of amenability [9].
As a corollary we also obtain a cohomological characterisation of exactness for discrete groups,
which answers a question of Higson, and which follows from our main result when X is the Stone-
Čech compactification βG of the group G. In this case, C(βG) can be identified with `∞(G), and
we obtain the following.

Corollary. Let G be a countable discrete group. Then the following are equivalent.

(1) The group G is exact;
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(2) The Johnson class [J] ∈ H1
b(G,N0(G, βG)∗∗) is trivial;

(3) Hp
b (G,E∗) = 0 for p ≥ 1 and every `1-geometric G-`∞(G)-module E.

It should be pointed out that bounded cohomology groups are difficult to compute, while our results
apply to many examples of amenable actions. For instance, as mentioned earlier, hyperbolic groups
act amenably on their boundary [1]. Another example is furnished by mapping class groups of
surfaces, which act amenably on the space of complete geodesic laminations of the surface [8].
Finally, the case of exact groups and actions on the Stone-Čech compactification was discussed
above. In all these case we obtain vanishing of bounded cohomology for a large class of natural
G-modules.

This paper builds on the cohomological characterisation of property A introduced in [3] and on the
study of cohomological properties of exactness in [5]. The ideas were developed during the visit
to Southampton by Nowak in January 2010.

2. Geometric Banach modules

Let C(X) denote the space of real-valued continuous functions on X. For a function f : G → C(X)
we shall denote by fg the continuous function on X obtained by evaluating f at g ∈ G. We define
the sup−`1 norm of f to be

‖ f ‖∞,1 = sup
x∈X

∑
g∈G

| fg(x)|,

and denote by V the Banach space of all functions on G with values in C(X) that have finite norm.
We introduce a Banach G-module associated to the action.

Definition 2. Let W00(G, X) be the subspace of V consisting of all functions f : G → C(X) which
have finite support and such that for some c ∈ R, depending on f ,

∑
g∈G fg = c1X , where 1X

denotes the constant function 1 on X. The closure of this space in the sup−`1-norm will be denoted
W0(G, X).

Let π : W00(G, X) → R be defined by
∑

g∈G fg = π( f )1X . The map π is continuous with respect to
the sup−`1 norm and so extends to the closure W0(G, X); we denote its kernel by N0(G, X).

In the case of X = βG and C(βG) = `∞(G) the space W0(G, βG) was introduced in [6]. For every
g ∈ G we define the function δg ∈ W00(G, X) by δg(h) = 1X when g = h, and zero otherwise.

The G-action on X gives an isometric action of G on C(X) in the usual way: for g ∈ G and f ∈ C(X),
we have (g · f )(x) = f (g−1x). The group G also acts isometrically on the space V in a natural way:
for g, h ∈ G, f ∈ V, x ∈ X, we have (g f )h(x) = fg−1h(g−1x) = (g · fg−1h)(x).

Since the summation map π is G-equivariant (we assume that the action of G on R is trivial) the
action of G restricts to W00(G, X) and so by continuity it restricts to W0(G, X). We obtain a short
exact sequence of G-vector spaces:

0→ N0(G, X)→ W0(G, X)
π
−→ R→ 0.
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Definition 3. Let E be a Banach space. We say that E is a C(X)-module if it is equipped with a
contractive unital representation of the Banach algebra C(X).

If X is a G-space then a C(X)-module E is said to be a G-C(X)-module if the group G acts on E by
isometries and the representation of C(X) is G-equivariant.

Note that the fact that we will only ever consider unital representations of C(X) means that there
is no confusion between multiplying by a scalar or by the corresponding constant function. For
instance, for f ∈ W0(G, X) multiplication by π( f ) agrees with multiplication by π( f )1X .

Example 4. The space V is a G-C(X)-module. Indeed, for every f ∈ V and t ∈ C(X) we define
t f ∈ V by (t f )g(x) = t(x) fg(x), for all g ∈ G. This action is well-defined as ‖t f ‖∞,1 ≤ ‖t‖∞‖ f ‖∞,1;
this also implies that the representation of C(X) on V is contractive. As remarked above, the group
G acts isometrically on V . The representation of C(X) is clearly unital and also equivariant, since
for every g ∈ G, f ∈ V and t ∈ C(X)

(g(t f ))h(x) = (t f )g−1h(g−1x) = t(g−1x) fg−1h(g−1x) = (g · t)(x)(g f )h(x)

Thus we have g(t f ) = (g · t)(g f ).

The equivariance of the summation map π implies that both W0(G, X) and N0(G, X) are G-invariant
subspaces of V . Note however, that W0(G, X) is not invariant under the action of C(X) defined
above, as for f ∈ W0(G, X) and t ∈ C(X) we have∑

g∈G

(t f )g(x) =
∑
g∈G

t(x) fg(x) = t(x)
∑
g∈G

fg(x) = ct(x).

However, the same calculation shows that the subspace N00(G, X) is invariant under the action of
C(X), and so is a G-C(X)-module, and hence so is its closureN0(G, X).

Let E be a G-C(X)-module, let E∗ be the Banach dual of E and let 〈−,−〉 be the pairing between the
two spaces. The induced actions of G and C(X) on E∗ are defined as follows. For α ∈ E∗, g ∈ G,
f ∈ C(X), and v ∈ E we let

〈gα, v〉 = 〈α, g−1v〉, 〈 fα, v〉 = 〈α, f v〉.

Note that the action of C(X) is well-defined since C(X) is commutative. it is easy to check the
following.

Lemma 5. If E is a G-C(X)module, then so is E∗.

We will now introduce a geometric condition on Banach modules which will play the role of an
orthogonality condition. To motivate the definition that follows, let us note that if f1 and f2 are
functions with disjoint supports on a space X then (assuming that the relevant norms are finite)
the sup-norm satisfies the identity ‖ f1 + f2‖∞ = sup{‖ f1‖∞, ‖ f2‖∞}, while for the `1-norm we have
‖ f1 + f2‖`1 = ‖ f1‖`1 + ‖ f2‖`1 .
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Definition 6. Let E be a Banach space and a C(X)-module. We say that v1 and v2 in E are disjointly
supported if there exist f1, f2 ∈ C(X) with disjoint supports such that f1v1 = v1 and f2v2 = v2.

We say that the module E is `∞-geometric if, whenever v1 and v2 have disjoint supports, ‖v1 + v2‖ =

sup{‖v1‖, ‖v2‖}.

We say that the module E is `1-geometric if for every two disjointly supported v1 and v2 in E

‖v1 + v2‖ = ‖v1‖ + ‖v2‖.

If v1 and v2 are disjointly supported elements of E and f1 and f2 are as in the definition, then
f1v2 = f1 f2v2 = 0, and similarly f2v1 = 0.

Note also that the functions f1 and f2 can be chosen to be of norm one in the supremum norm
on C(X). To see this, note that Tietze’s extension theorem allows one to construct continuous
functions f ′1 , f ′2 on X which are of norm one, have disjoint supports and such that f ′i takes the value
1 on Supp fi . Then f ′i φi = ( f ′i fi)φi = fiφi = φi. Now replace fi with f ′i .

Finally, if f1, f2 ∈ C(X) have disjoint supports then, again by Tietze’s extension theorem, f1v1 and
f2v2 are disjointly supported for all v1, v2 ∈ E.

Examples of `∞-geometric G-C(X) modules include the modules C(X, E), the space of continuous
functions from a G-space X to a G-module E and any of its submodules closed under both G-
and C(X)- module structures. Examples of `1-geometric modules can be then produced using the
following fact.

Lemma 7. If E is an `1-geometric module then E∗ is `∞-geometric.

If E is an `∞-geometric module then E∗ is `1-geometric.

Proof. Let us assume that φ1, φ2 ∈ E∗ are disjointly supported and let f1, f2 ∈ C(X) be as in
Definition 6, chosen to be of norm 1.

If E is `1-geometric, then for every vector v ∈ E, ‖ f1v‖ + ‖ f2v‖ = ‖( f1 + f2)v‖ ≤ ‖v‖. Furthermore,
‖φ1 + φ2‖ = sup

‖v‖=1
|〈φ1 + φ2, v〉| = sup

‖v‖=1
|〈 f1φ1, v〉 + 〈 f2φ2, v〉|

= sup
‖v‖=1
|〈φ1, f1v〉 + 〈φ2, f2v〉|

≤ sup
‖v‖=1

(‖φ1‖‖ f1v‖ + ‖φ2‖‖ f2v‖)

≤ sup{‖φ1‖, ‖φ2‖} sup
‖v‖=1

(‖ f1v‖ + ‖ f2v‖)

≤ sup{‖φ1‖, ‖φ2‖}

Since f1φ2 = 0 we have that

‖φ1‖ = ‖ f1(φ1 + φ2)‖ ≤ ‖ f1‖‖φ1 + φ2‖ = ‖φ1 + φ2‖.

Similarly, we have ‖φ2‖ ≤ ‖φ1 + φ2‖, and the two estimates together ensure that ‖φ1 + φ2‖ =

sup{‖φ1‖, ‖φ2‖} as required.
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For the second statement, let us assume that E is `∞-geometric and that φ1, φ2 ∈ E∗ are disjointly
supported. Then

‖φ1‖ + ‖φ2‖ = sup
‖v1‖,‖v2‖=1

〈φ1, v1〉 + 〈φ2, v2〉

= sup
‖v1‖,‖v2‖=1

〈φ1, f1v1〉 + 〈φ2, f2v2〉

= sup
‖v1‖,‖v2‖=1

〈φ1 + φ2, f1v1 + f2v2〉

≤ sup
‖v1‖,‖v2‖=1

‖φ1 + φ2‖‖ f1v1 + f2v2‖

≤ ‖φ1 + φ2‖ ≤ ‖φ1‖ + ‖φ2‖.

where the last inequality is just the triangle inequality, so the inequalities are equalities throughout
and ‖φ1‖ + ‖φ2‖ = ‖φ1 + φ2‖ as required. �

We have already established that N0(G, X) is a G-C(X)-module. Let φ1 and φ2 be disjointly sup-
ported elements of N0(G, X); this means that there exist disjointly supported functions f1 and f2 in
C(X) such that φi = fiφi for i = 1, 2. Then

‖φ1 + φ2‖∞,1 = ‖ f1φ1 + f2φ2‖ = sup
x∈X

∑
g∈G

| f1(x)φ1
g(x) + f2(x)φ2

g(x)|

We note that the two terms on the right are disjointly supported functions on X and so

‖φ1 + φ2‖∞,1 = sup
x∈X

∑
g∈G

| f1(x)φ1
g(x)| +

∑
g∈G

| f2(x)φ2
g(x)|

 = sup(‖φ1‖∞,1, ‖φ
2‖∞,1).

Thus we obtain

Lemma 8. The module N0(G, X) is `∞-geometric. Hence the dual N0(G, X)∗ is `1-geometric and
the double dual N0(G, X)∗∗ is `∞-geometric.

We now assume that E is an `1-geometric C(X)-module, so that its dual E∗ is `∞-geometric.

Lemma 9. Let f1, f2 ∈ C(X) be non-negative functions such that f1 + f2 ≤ 1X . Then for every
φ1, φ2 ∈ E

∗

‖ f1φ1 + f2φ2‖ ≤ sup{‖φ1‖, ‖φ2‖}.

Proof. Let M ∈ N and ε = 1/M. For i = 1, 2 define fi,0 = min{ fi, ε}, fi,1 = min{ fi − fi,0, ε},
fi,2 = min{ fi − fi,0 − fi,1, ε}, and so on, to fi,M−1.

Then fi, j(x) = 0 iff fi(x) ≤ jε, so fi, j > 0 iff fi(x) > jε which implies that Supp fi, j ⊆ f −1
i ([ jε,∞)).

So for j ≥ 2, Supp( f1, j) ⊆ f −1
1 ([ jε,∞)) and Supp f2,M+1− j ⊆ f −1

2 ([(M + 1 − j)ε,∞)).

If x ∈ Supp( f1, j) ∩ Supp( f2,M+1− j) then 1≥ f1(x) + f2(x) ≥ jε + (M + 1 − j)ε = 1 + ε, so the two
supports Supp( f1, j),Supp( f2,M+1− j) are disjoint.
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We have that

f1 = f1,0 + f1,1 +

M−1∑
j=2

f1, j

f2 = f2,0 + f2,1 +

M−1∑
j=2

f2,M+1− j.

So using the fact that ‖ f1, jφ1 + f2,M+1− jφ2‖ ≤ sup{‖ f1, jφ1‖, ‖ f2,M+1− jφ2‖} ≤ ε supi ‖φi‖ we have the
following estimate:

‖ f1φ1 + f2φ2‖ ≤ ‖( f1,0 + f1,1)φ1‖ + ‖( f2,0 + f2,1)φ2‖ +

M∑
j=2

‖ f1, jφ1 + f2,M+1− jφ2‖

≤ 4ε sup
j
‖φi‖ +

M−1∑
j=2

ε sup
i
‖φi‖

= (4ε + (M − 2)ε) sup
i
‖φi‖

= (1 + 2ε) sup
i
‖φi‖.

�

Lemma 10. Let f1, . . . , fN ∈ C(X), fi ≥ 0,
∑N

i=1 fi ≤ 1X , φ1, . . . , φN ∈ E
∗.

Then ‖
∑

i fiφi‖ ≤ sup1,...,N ‖φi‖.

Proof. We proceed by induction. Assume that the statement is true for some N. Then let f0, f1, . . . , fN ∈

C(X), fi ≥ 0,
∑N

i=1 fi ≤ 1X , and let φ0, φ1, . . . , φN ∈ E
∗.

Let f ′1 = f0 + f1 and leave the other functions unchanged. For δ > 0 let

φ′1,δ =
1

f0 + f1 + δ
( f0φ0 + f1φ1).

Since we clearly have
f0

f0 + f1 + δ
+

f1
f0 + f1 + δ

≤ 1X

by the previous lemma we have that ‖φ′1,δ‖ ≤ sup {‖φ0‖, ‖φ1‖}, and so by induction

‖ f ′1φ
′
1,δ + f2φ2 + · · · + fNφN‖ ≤ sup{‖φ′1,δ‖, ‖φ2‖, . . . , ‖φN‖} ≤ sup

i=0,...,N
‖φi‖.

Consider now

f ′1φ
′
1,δ =

( f0 + f1)
f0 + f1 + δ

( f0φ0 + f1φ1) =
( f0 + f1) f0
f0 + f1 + δ

φ0 +
( f0 + f1) f1
f0 + f1 + δ

φ1.
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We note that for i = 0, 1

fi −
( f0 + f1) fi
f0 + f1 + δ

=
δ fi

f0 + f1 + δ
≤ δ

and so ( f0+ f1) fi
f0+ f1+δ converges to fi uniformly on X, as δ → 0, which implies that f ′1φ

′
1,δ converges to

f0φ0 + f1φ1 in norm, and the lemma follows. �

Lemma 11. If f1, . . . , fN ∈ C(X) (we do not assume that fi ≥ 0) are such that
∑N

i=1 | fi| ≤ 1X and
φ1, . . . , φN ∈ E

∗ then

‖

N∑
i=1

fiφi‖ ≤ 2 sup
i=1,...,N

‖φi‖.

Proof. If fi = f +
i − f −i , then | fi| = f +

i + f −i and
∑

f +
i +

∑
f −i ≤ 1.

Then by the previous lemma ‖
∑N

i=1 f ±i φi‖ ≤ supi=1,...,N ‖φi‖ so

‖
∑

f +
i φi −

∑
f −i φi‖ ≤ 2 sup

i=1,...,N
‖φi‖.

�

3. Amenable actions and invariant means

In this section we will recall the definition of a topologically amenable action [2] and characterise it
in terms of the existence of a certain averaging operator. For our purposes the following definition,
adapted from [5, Definition 4.3.1] is convenient.

Definition 12. The action of G on X is amenable if and only if there exists a sequence of elements
f n ∈ W00(G, X) such that

(1) f n
g ≥ 0 in C(X) for every n ∈ N and g ∈ G,

(2) π( f n) = 1 for every n,

(3) for each g ∈ G we have ‖ f n − g f n‖V → 0.

Note that when X is a point the above conditions reduce to the definition of amenability of G. On
the other hand, if X = βG, the Stone-Čech compactification of G then amenability of the natural
action of G on X is equivalent to Yu’s property A by a result of Higson and Roe [10].

Remark 13. In the above definition we may omit condition 1 at no cost, since given a sequence of
functions satisfying conditions 2 and 3 we can make them positive by replacing each f n

g (x) by

| f n
g (x)|∑

h∈G
| f n

h (x)|
.
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Conditions 1 and 2 are now clear, while condition 3 follows from standard estimates (see e.g. [6,
Lemma 4.9]).

The first definition of amenability of a group G given by von Neumann was in terms of the existence
of an invariant mean on the group. The following definition gives a version of an invariant mean
for an amenable action on a compact space.

Definition 14. Let G be a countable group acting on a compact space X by homeomorphisms. A
mean for the action is an element µ ∈ W0(G, X)∗∗ such that µ(π) = 1. A mean µ is said to be
invariant if µ(gϕ) = µ(ϕ) for every ϕ ∈ W0(G, X)∗.

The following theorem will be an important tool in the proof of our main result.

Theorem 15. Let G be a countable discrete group acting by homeomorphisms on a compact Haus-
dorff topological space X. The action is amenable if and only if there exists an invariant mean for
the action.

Proof. Let G act amenably on X and consider the sequence f n provided by Definition 12. Each f n

satisfies ‖ f n‖ = 1. We now view the functions f n as elements of the double dual W0(G, X)∗∗. By
the weak-* compactness of the unit ball there is a convergent subnet f λ, and we define µ to be its
weak-* limit. It is then easy to verify that µ is a mean. Since

|〈 f λ − g f λ, ϕ〉| ≤ ‖ f λ − g f λ‖V‖ϕ‖

and the right hand side tends to 0, we obtain µ(ϕ) = µ(gϕ).

Conversely, by Goldstine’s theorem, (see, e.g., [11, Theorem 2.6.26]) as µ ∈ W0(G, X)∗∗, µ is the
weak-* limit of a bounded net of elements f λ ∈ W0(G, X). We note that we can choose f λ in such
a way that π( f λ) = 1. Indeed, given f λ with π( f λ) = cλ → µ(π) = 1 we replace each f λ by

f λ + (1 − cλ)δe.

Since (1 − cλ)δe → 0 in norm in W0(G, X), µ is the weak-* limit of the net f λ + (1 − cλ)δe as
required.

Since µ is invariant, we have that for every g ∈ G, g f λ → gµ = µ, so that g f λ − f λ → 0 in the
weak-* topology. However, for every g ∈ G, g f λ − f λ ∈ W0(G, X), and so the convergence is in
fact in the weak topology on W0(G, X).

For every λ, we regard the family (g f λ− f λ)g∈G as an element of the product
∏

g∈G W0(G, X), noting
that this sequence converges to 0 in the Tychonoff weak topology.

Now
∏

g∈G W0(G, X) is a Fréchet space in the Tychonoff norm topology, so by Mazur’s theorem
there exists a sequence f n of convex combinations of f λ such that (g f n − f n)g∈G converges to zero
in the Fréchet topology. Thus there exists a sequence f n of elements of W0(G, X) such that for
every g ∈ G, ‖g f n − f n‖ → 0 in W0(G, X).

The result now follows after applying the normalisation procedure explained in Remark 13. �
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4. Equivariant means on geometric modules

Given an invariant mean µ ∈ W0(G, X)∗∗ for the action of G on X and an `1-geometric G-C(X)
module E, we define a G-equivariant averaging operator µE : `∞(G,E∗) → E∗ which we will also
refer to as an equivariant mean for the action.

To do so, following an idea from [4], we introduce a linear functional στ,v on W00(G, X). Given a
Banach space E define `∞(G,E) to be the space of functions f : G → E such that supg∈G ‖ f (g)‖E <
∞. If G acts on E then the action of the group G on the space `∞(G,E) is defined in an analogous
way to the action of G on V , using the induced action of G on E:

(gτ)h = g(τg−1h),

for τ ∈ `∞(G,E) and g ∈ G.

Let us assume that E is an `1-geometric G-C(X) module, and let τ ∈ `∞(G,E∗). Choose a vector
v ∈ E and define a linear functional στ,v : W00(G, X)→ R by

(1) στ,v( f ) = 〈
∑
h∈G

fhτh, v〉

for every f ∈ W00(G, X). If we now use Lemma 11 together with the support condition required of
elements of W00(G, X) then we have the estimate

|στ,v( f )| ≤
∥∥∥∥∑

h

fhτh

∥∥∥∥‖v‖ ≤ 2‖ f ‖‖τ‖‖v‖.

This estimate completes the proof of the following.

Lemma 16. Let E be an `1-geometric G-C(X) module. For every τ ∈ `∞(G,E∗) and every v ∈ E the
linear functional στ,v on W00(G, X) is continuous and so it extends to a continuous linear functional
on W0(G, X).

Lemma 17. The map `∞(G,E∗) × E→ W0(G, X)∗ defined by (τ, v) 7→ στ,v is G-equivariant.

Proof.

σgτ,gv( f ) =

〈∑
h

fhg(τg−1h), gv
〉

=

〈
g
∑

h

(g−1 · fh)τg−1h, gv
〉

=

〈∑
h

(g−1 · fh)τg−1h, v
〉

=

〈∑
h

(g−1 f )g−1hτg−1h, v
〉

= στ,v(g−1 f ) = (gστ,v)( f ).

�

Definition 18. Let E be an `1-geometric G-C(X) module, and let µ ∈ W0(G, X)∗∗ be an invariant
mean for the action. We define µE : `∞(G,E∗)→ E∗ by

〈µE(τ), v〉 = 〈µ, στ,v〉,

for every τ ∈ `∞(G,E∗), and v ∈ E.
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Lemma 19. Let E be an `1-geometric G-C(X) module, and let µ ∈ W0(G, X)∗∗ be an invariant
mean for the action.

(1) The map µE defined above is G-equivariant.

(2) If τ ∈ `∞(G,E∗) is constant then µE(τ) = τe.

Proof.

〈µE(gτ), v〉 = µ(σgτ,v) = µ(g · στ,g−1v) = µ(στ,g−1v)

= 〈µE(τ), g−1v〉 = 〈g · (µE(τ)), v〉.

If τ is constant then

στ,v( f ) =

〈∑
h

fhτh, v
〉

=

〈∑
h

fh

 τe, v
〉

= 〈(π( f )1X)τe, v〉 = 〈π( f )τe, v〉 = 〈τe, v〉π( f ).

So στ,v = 〈τe, v〉π and
〈µE(τ), v〉 = µ(στ,v) = µ(〈τe, v〉π) = 〈τe, v〉,

hence µE(τ) = τe. �

5. Amenable actions and bounded cohomology

Let E be a Banach space equipped with an isometric action by G. Then we consider a cochain
complex Cm

b (G,E∗) which in degree m consists of G-equivariant bounded cochains φ : Gm+1 → E∗

with values in the Banach dual E∗ of E which is equipped with the natural differential d as in
the homogeneous bar resolution. Bounded cohomology with coefficients in E∗ will be denoted by
H∗b(G,E∗).

Definition 20. Let G be a countable discrete group acting by homeomorphisms on a compact
Hausdorff topological space X. The function

J(g0, g1) = δg1 − δg0

is a bounded cochain of degree 1 with values in N00(G, X), and in fact it is a bounded cocycle and
so represents a class in H1

b(G,N0(G, X)∗∗, where we regard N00(G, X) as a subspace of N0(G, X)∗∗.
We call [J] the Johnson class of the action.

We are now in the position to prove our main result, which we restate.

Theorem 1. Let G be a countable discrete group acting by homeomorphisms on a compact Haus-
dorff topological space X. Then the following are equivalent

(1) The action of G on X is topologically amenable.

(2) There exists an invariant mean for the action.
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(3) The class [J] ∈ H1
b(G,N0(G, X)∗∗) is trivial.

(4) Hp
b (G,E∗) = 0 for p ≥ 1 and every `1-geometric G-C(X) module E.

Proof. The equivalence of (1) and (2) was proved in Theorem 15. We now show that (2) is equiva-
lent to (3). The short exact sequence of G-modules

0→ N0(G, X)→ W0(G, X)
π
−→ R→ 0

leads, by taking double duals, to the short exact sequence

0→ N0(G, X)∗∗ → W0(G, X)∗∗ → R→ 0

which in turn gives rise to a long exact sequence in bounded cohomology

H0
b(G,N0(G, X)∗∗)→ H0

b(G,W0(G, X)∗∗)→ H0
b(G,R)→ H1

b(G,N0(G, X)∗∗)→ . . .

The Johnson class [J] is the image of the class [1] ∈ H0
b(G,R) under the connecting homomorphism

d : H0
b(G,R) → H1(G,N0(G, X)∗∗), and so [J] = 0 if and only if d[1] = 0. By exactness of

the cohomology sequence, this is equivalent to [1] ∈ Im π∗∗, where π∗∗ : H0
b(G,W0(G, X)∗∗) →

H0
b(G,R) is the map on cohomology induced by the summation map π. Since H0

b(G,W0(G, X)∗∗) =

(W0(G, X)∗∗)G and H0
b(G,R) = R we have that [J] = 0 if and only if there exists an element

µ ∈ W0(G, X)∗∗ such that µ = gµ and µ(π) = 1. Thus µ is an invariant mean for the action.

We turn to the implication (2) implies (4). Let µ be the invariant mean associated with the action.
For every h ∈ G and for every equivariant bounded cochain φ we define shφ : Gp → E∗ by
shφ(g0, . . . , gp−1) = φ(g, g0, . . . , gp−1); we note that for fixed h, shφ is not equivariant in general.
However, the map sh does satisfy the identity dsh + shd = 1 for every h ∈ G, and we will now
construct an equivariant contracting homotopy, adapting an averaging procedure introduced in [4].

For φ ∈ Cp
b (G,E∗) let φ̂ : Gp → `∞(G,E∗) be defined by φ̂(g)(h) = shφ(g), for g = (g0, . . . gp−1).

Note that for every k, h ∈ G,

φ̂(kg0, . . . , kgp−1)(h) = φ(h, kg0, . . . , kgp−1) = k(φ(k−1h, g0, . . . , gp−1))

= k(φ̂(g0, . . . , gp−1)(k−1h))

= (k(φ̂(g0, . . . , gp−1)))(h)

so φ̂(kg) = k(φ̂(g)).

We can now define a map s : Cp(G,E∗)→ Cp−1(G,E∗):

sφ(g) = µE(φ̂(g)),

where µE : `∞(G,E∗)→ E∗ is the map defined in Lemma 19 using the invariant mean µ. Note that
‖µE‖ ≤ 2‖µ‖, and ‖φ̂(g)‖ ≤ sup{‖φ(k)‖ | k ∈ Gp+1}. Hence sφ is bounded.

For every cochain φ, k(sφ) = s(kφ) = sφ since φ̂ and µE are equivariant.
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The map s provides a contracting homotopy for the complex C∗b(G,E∗) which can be seen as fol-
lows. As µE : `∞(G,E∗) → E∗ is a linear operator it follows that for a given φ ∈ Cp

b (G,E∗), and
a p + 1-tuple of arguments k = (k0, . . . , kp), dsφ is obtained by applying the mean µE to the map
g 7→ dsgφ(k), while sdφ is obtained by applying µE to the function g 7→ sgdφ(k). Thus

(sd + ds)φ(k) = µE(g 7→ (dsg + sgd)φ(k)).

Given that dsg + sgd = 1 for every g ∈ G, for every g ∈ Gp+1 the function g 7→ (dsg + sgd)φ(k) =

φ(k) ∈ E∗ is constant, and so by Lemma 19,

(sd + ds)φ(k) = (dse + sed)φ(k) = φ(k).

Thus sd + ds = 1, as required.

Collecting these results together, we have proved that (2) implies (4).

The fact that (4) implies (3), follows from the fact that N0(G, X)∗ is an `1-geometric G-C(X)-
module, proved in Lemma 8. �
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