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Abstract. We prove the zero-in-the-spectrum conjecture for large, regular cov-
ers associated to amenable subgroups of fundamental group of a closed manifold
N , provided that π1(N) is C∗-exact.

The zero-in-the-spectrum conjecture was first formulated by Gromov [6, 7] and
asks if the spectrum Laplace-Beltrami operator acting on the square-integrable p-
forms on the universal cover of a closed aspherical manifold contains zero. This
fact is implied by the Strong Novikov Conjecture and thus the interest in finding
a counterexample. A more general zero-in-the-spectrum conjecture on open com-
plete manifolds was stated by Lott and it is true if there is a positive answer to
the following question: does the spectrum of the Laplace-Beltrami operator ∆p
acting on square-integrable p-forms of a complete manifold M contain zero for
some p = 0, 1, . . . ? The answer is negative in general: Farber and Weinberger
[4] showed that for every n ≥ 6 there exists a manifold N such that zero is not in
the spectrum of ∆p for any p ∈ 0, 1 . . . acting on the universal cover of N . Later
Higson, Roe and Schick [12] extended this result and gave a complete description
of groups which can appear as fundamental groups of manifolds whose universal
covers do not have zero in the spectrum of the Laplacian.

Because of the origins of the problem, various covering spaces are a natural
environment for considering zero-in-the-spectrum questions. An early result of
this type is a theorem of Brooks [1] stating that given a regular cover M of a
compact manifold N , 0 is in the spectrum of ∆0 onM if and only if the group of
deck transformations is amenable. The articles [14, 15] provide a comprehensive
survey of this topic.

The purpose of this article is to prove the zero-in-the-spectrum conjecture on
certain regular covers associated to normal, amenable subgroups of the fundamen-
tal group of a compact manifold N (we call such covers co-amenable) under the
assumption that π1(N) is C∗-exact, or in other words, has Yu’s Property A. This
result (Theorem 7) is stated and proved in the last section, since to formulate it we
need a few technical notions, which are explained in detail in the text.

Our main tool is coarse index theory. In order to apply such methods we need to
consider manifolds satisfying a certain largeness condition, which allows to trans-
late small scale geometric information to large scale. More precisely we call an
open n-manifold M large if the fundamental class in the locally finite homology
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group Hl f
n (M ) survives the coarsening of this homology, giving a non-zero ele-

ment in the coarse homology group HXn(M ) (see Section 2 for a precise formula-
tion). Roughly speaking this means that the image of the fundamental class of the
manifoldM under the classifying map to (appropriately constructed) locally finite
homology of the classifying space EG, where G is the group of deck transforma-
tions ofM, is non-zero. This notion is essential for us since the examples of man-
ifolds we’re concerned with, as regular covers associated to non-trivial subgroups
of the fundamental groups of compact manifolds, don’t satisfy another widely used
largeness condition, uniform contractibility.

The paper is organized as follows. In section 1 we discuss C∗-exactness and
prove a permanence property for exact groups, in section 2 we define in detail
the above-mentioned notion of largeness and the last section is devoted solely to
proving the main theorem of the paper.

1. C∗-exact quotients

Property A was defined by Yu [22] as a geometric condition implying the Coarse
Baum-Connes Conjecture for discrete metric spaces. Soon after it was introduced it
turned out that Property A for finitely generated group G is equivalent to existence
of a topologically amenable action on a compact space [11] as well as to exactness
of the reduced group C∗-algebra C∗r (G) [9, 18]. The latter is the reason why groups
with Property A are often called C∗-exact, or simply exact, and we will use these
terms interchangeably.

We denote

`1(X)1,+ = { f ∈ `1(X) | ‖ f ‖1 = 1, f ≥ 0 } .

Definition 1 ([22]; in this form [11]). Let X be a discrete metric space with
bounded geometry. We say that X has Property A if for every R < ∞ and ε > 0
there exists a map ξ : X → `1(X)1,+ and S ∈ R such that

(1) ‖ξx − ξy‖`1(X) ≤ ε whenever d(x, y) ≤ R

(2) supp ξx ⊆ B(x, S ) for every x ∈ X.

Determining how large the class of groups possessing Property A is an active
area of research due to applications to various problems in geometry and topol-
ogy, see for example [19, 20, 21, 22, 23]. One of the most natural topics in this
context are permanence properties of exact groups. Such properties were studied
most notably by Kirchberg and Wasserman [13] using the C∗-algebraic definition
and Dadarlat and Guentner in the context of coarse embeddability into the Hilbert
space [3]. Among such constructions are passing to a subgroup, direct limits and
extensions thus in many ways Property A indeed resembles amenability.

Unlike amenability however, Property A is preserved by free products [2] and,
more importantly, is not preserved under surjective homomorphisms. The latter is
a consequence of Gromov’s construction [8] of finitely presented groups which do
not coarsely embed into the Hilbert space together with exactness of free groups.
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Thus we are interested in general conditions guaranteeing that in the exact sequence

(1) 1 −→ H −→ G −→ G/H −→ 1

G/H has Property A provided that G has it. If we exclude the trivial case and
assume that G/H is infinite there are two other cases in which such a statement is
obviously true:

(i) If H is a finite group then G and G/H are quasi-isometric, so G is exact if
and only if G/H is exact.

(ii) If the exact sequence (1) splits then then G/H is embedded in G, and in-
herits exactness from the ambient group.

Our first step in proving Theorem 7 is the following

Theorem 2. Let G be a finitely generated group satisfying Property A and let H be
an amenable subgroup of G. Then the quotient G/H has Property A.

This condition is sharp: as soon as we drop the amenability condition on H, we
can take G in (1) to be a free group and get all finitely generated groups as quotients.

Let G be a finitely generated group and H its subgroup. Then the action of H on
G by translations induces an isometric action of H on `∞(G). We denote this action
by (h · f ) (x) = f (h−1x), for every f ∈ `∞(G), x ∈ G and h ∈ H. If G is amenable
then given f ∈ `∞(G) we will denote the value of the invariant mean of f by∫

G
f (g) dg.

We will treat the cosets of H as orbits of its action on G and denote the orbit of
x ∈ G by Hx. The quotient G/H is a metric space with the metric

d(Hx,Hy) = min
h,h′∈H

d(hx, h′y).

This in particular means that the quotient map G → G/H is a contraction.
In [16, 17] an averaging procedure for Property A was obtained and the next

statement also makes use of it.

Proposition 3. Let G be a group with Property A and let H be an amenable
subgroup of G. Then for every ε > 0 Property A can be realized by a map
ξ : G → `1(G)1,+ such that ξ is equivariant under the action of H, i.e.,

(2) ξhx = h · ξx

for every h ∈ H and x ∈ G.

Proof. Assume that G satisfies conditions of Definition 1 for R < ∞, ε > 0 with
S > 0 realized by a function ζ : G → `1(G)1,+. For every x ∈ G define

ξx(y) =

∫
H
ζhx(hy) dh.

Since 0 ≤ ζx(y) ≤ 1 for all x, y ∈ G we get a well-defined function ξx : G → R
satisfying 0 ≤ ξx(y) ≤ 1 for all x, y ∈ G. Observe that if d(x, y) > S then ζx(y) = 0.
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Since H acts by isometries, d(hx, hy) = d(x, y) and it follows that ξx(y) = 0 if
d(x, y) > S . This allows to compute the norm of ξx:

‖ξx‖`1(G) =
∑

y∈B(x,S )

ξx(y) =
∑

y∈B(x,S )

∫
H
ζhx(hy) dh

=

∫
H

 ∑
y∈B(x,S )

ζhx(hy)

 dh =

∫
H

1 dh

= 1,

which shows that ξx is an element of `1(G)1,+ for every x ∈ G.
Let now x1, x2 ∈ G satisfy d(x1, x2) = 1. Then

‖ξx1 − ξx2‖`1(G) =
∑
y∈G

∣∣∣ ξx1(y) − ξx2(y)
∣∣∣(3)

=
∑
y∈G

∣∣∣∣∣∫
H
ζhx1(hy) dh −

∫
H
ζhx2(hy) dh

∣∣∣∣∣
≤

∫
H

∑
y∈X

∣∣∣ζhx1(hy) − ζhx2(hy)
∣∣∣ dh

≤

∫
H
ε dh = ε,

since the sum is in fact finite and the metric is left-invariant.
Finally we need to show that (2) holds. Indeed, if γ ∈ H and x ∈ G then by the

invariance of the mean on H we obtain

ξγx(y) =

∫
H
ζhγx(hy) dh

=

∫
H
ζh̃x(h̃γ−1y) dh̃ = ξx(γ−1y)

= γ · ξx(y),

after substituting h̃ = hγ. This ends the proof. �

Proof of Theorem 2. By Proposition 3, the function ξ : G → `1(G) can be chosen
to be equivariant on cosets of H. We define the map η : G/H → `1(G/H)1,+ by

ηHx(Hy) =
∑
h∈H

ξx(hy).
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We need to show that η is well defined. So let Hx = Hx′ and Hy = Hy′ as elements
of G/H. Then there are elements γ, g ∈ H such that γx = x′ and gy = y′.

ηHx′(Hy′) =
∑
h∈H

ξx′(hy′) =
∑
h∈H

ξγx(hgy)

=
∑
h∈H

ξx(γ−1hgy) =
∑
h∈H

ξx(hy)

= ηHx(Hy),

after using Proposition 3 and substituting γ−1hg for g.

Now note that since the quotient map G → G/H is a contraction, if the elements
Hx and Hy are more than distance S away from each other, ξx vanishes on the
coset Hy and we have

ηHx(Hy) =
∑
h∈H

ξx(hy) = 0,

thus supp ηHx ⊆ B(Hx, S ) and we also have

‖ηHx‖`1(G/H) =
∑

Hy∈G/H

ηHx(Hy)

=
∑

Hy∈G/H

∑
h∈H

ξx(hy)

= ‖ξh‖`1(G/H) = 1.

Suppose now that elements Hx and Hx′ are distance 1 from each other. This
means that the elements x and x′ can be assumed to satisfy d(x, x′) ≤ 1. Thus

‖ηHx − ηHx′‖`1(G/H) =
∑

Hy∈G/H

∣∣∣ ηHx(Hy) − ηHx′(Hy)
∣∣∣

=
∑

Hy∈G/H

∣∣∣∣∣∣∣ ∑h∈H

ξx(hy) −
∑
h∈H

ξx′(hy)

∣∣∣∣∣∣∣
≤

∑
Hy∈G/H

∑
h∈H

|ξx(hy) − ξx′(hy) |

= ‖ξx − ξx′‖`1(G) ≤ ε.

�

Remark 4. Note that taking quotients by amenable subgroups not only preserves
Property A, but also preserves a coarse invariant associated to an exact group. In
[17] an invariant AX for metric spaces with Property A was defined and one can
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extract from the proof of Theorem 2 that for an amenable subgroup H of a group
G satisfying Property A we have

AG/H ≤ AG.

We end this section with a question. It is a very interesting and so far unsolved
problem whether Thompson’s group F has Property A. One strategy to obtain a
positive answer could use Theorem 2 and it becomes natural to ask: is it possible
to write Thompson’s group F in the form G/H, where G has Property A and H is
amenable? It would be sufficient to embed F into such G/H coarsely, e.g. as a
subgroup.

2. Large Riemannian manifolds

2.1. Largeness. There are several notions of largeness of open manifolds, see e.g.
[6]. One of them is uniform contractibility, which means that for every R < ∞ there
exists an S R < ∞ such that for any point x ∈ M the ball B(x,R) is contractible in-
side B(x, S R). We will need a less restrictive criterion.

Let X be a metric space. An anti-Čech system is a sequence {Uk}k∈N of covers
such that:

(i) there exist numbers Rk, k = 1, 2, . . . , such that diam(U) ≤ Rk for every
U ∈ Uk;

(ii) the Lebesque numbers λk of Uk satisfy λk ≥ Rk−1;
(iii) λk → ∞ as k → ∞.

Let Hl f
∗ be the locally finite homology theory. The coarse homology HX∗(X)

[19] is defined by setting

HX∗(X) = lim
k→∞

Hl f
∗ (|Uk|)

where {Uk} is an anti-Čech system for X and |Uk| denotes the nerve space of the
cover Uk; see also [10]. There is a character map c∗ : Hl f

∗ (X) → HX∗(X) induced
by the map c : X → |U1| defined by the formula

c(x) =
∑

U∈U1

ϕU(x)[U],

where {ϕU}U1 is a partition of unity subordinate to the cover U1. The character map
c∗ is an isomorphism provided that X is uniformly contractible [19], see also [10].

Definition 5 ([5]). Let M be a complete, oriented n-dimensional manifold. Let
[M] ∈ Hl f

n (M) be the fundamental class ofM. We callM large if

c∗([M]) , 0.

In [5] the above condition was called macroscopical largeness. Note that the
above notion of largeness for equivalent metrics depends only on the quasi-isometry
class of these metrics. More precisely, take a manifoldM which is equipped with
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two equivalent, quasi-isometric metrics, d1 and d2 and the corresponding character
maps by c1

∗ and c2
∗ respectively. Then for any n the diagram

Hl f
n (M)

HXn((M, d1))

c1
∗

�
−−−−−−−−−−→

id∗ �
HXn((M, d2))

c2
∗

-

is commutative, so in particular (M, d1) is large if and only if (M, d2) is.

Remark 6. Note also that largeness is the same as asking whether e∗([M]) , 0
where e : M → EG is the classifying map of the cover M and e∗ is the map
induced on appropriately constructed homology. One has to be careful and define
this homology as an appropriate direct limit over compact subsets, as EG might
not be locally compact. We skip the details.

3. The main theorem

Let (M, dM) be an open complete Riemannian manifold and let G be a group
acting freely, properly on M by isometries with a compact quotient N = M/G.
We have the following exact sequence:

1 −→ π1(M) −→ π1(N) −→ G −→ 1.

In the above setting we will say thatM is a co-amenable cover if π1(M) is amenable
(M is often called an amenable cover when G is amenable). Obviously if π1(M) is
non-trivial, the manifoldM is not uniformly contractible.

Theorem 7. Let (N , dN ) be a closed Riemannian manifold such that π1(N) is C∗-
exact. Let (M, dM) be a co-amenable cover of N which is large and has bounded
geometry (i.e. bounded sectional curvature and positive injectivity radius). Then
the zero-in-the-spectrum conjecture holds forM with any bounded geometry met-
ric which is quasi-isometric and topologically equivalent to dM.

Proof of Theorem 7. LetM, N and G be as above. By assumptions and Theorem
2 we have that G has Property A. By the Švarc-Milnor lemma, G andM are quasi-
isometric due to the fact that N = M/G is compact. Since G has Property A and
Property A is a coarse invariant,M equipped with any metric in the quasi-isometry
class of dM has Property A.

The index map is defined as the following composition:

K∗(M ) −−−−−−→c∗ KX∗(M ) −−−−−→µ K∗(C∗(M ))

where K∗(M ) is the K-homology group ofM, KX∗(M ) is the coarsening of this
K-homology group, C∗(M ) is the Roe algebra, µ is the coarse assembly map and
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c∗ is the character map (see [10, 19, 20, 22] for details on the Coarse Baum-Connes
Conjecture).

Let D be the de Rham operator onM. SinceM is large, we have that c∗(D) ,
0 in the coarse K-homology group KX∗(M). By Theorems 2.2 and 1.1 in [22],
Property A forM implies that the Coarse Baum-Connes Conjecture is true forM,
i.e. µ is an isomorphism and consequently µ ◦ c∗(D) , 0 in K∗(C∗(M)). This ends
the proof. �

In the case π1(M) = {1} (i.e. the cover is universal), Theorem 7 is due to Yu
[22].

The assumption of largeness cannot be dropped as the example of Farber and
Weinberger [4] shows (see also [12]), since in their construction the fundamental
group of the manifold N is a direct product of free groups, which is exact.
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